Facts & Figures

If you haven't heard about ITER, chances are you will soon. The scale and scope of the ITER Project rank it among the most ambitious science endeavors of our time. Building is underway now on the ITER scientific installation in Saint Paul-lez-Durance, France.

Scroll down for some interesting facts about the project.

100,000 kilometres

100,000 kilometres of niobium-tin (Nb3Sn) superconducting strands are necessary for ITER's toroidal field magnets. Fabricated by suppliers in six ITER Domestic Agencies—China, Europe, Japan, Korea, Russia and the USA—production began in 2009 and ended in 2014. Over 400 tonnes of this multifilament wire has been produced for ITER at a rate of about 150 tonnes/year, a spectacular

increase in worldwide production capacity (estimated, before the scale-up for ITER, at a maximum of 15 tonnes/year). Stretched end to end, the Nb3Sn strand produced for ITER would wrap around the Earth at the equator twice.

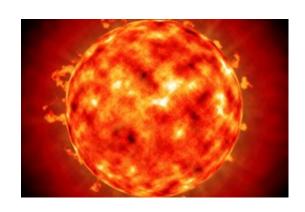
100,000 visitors

The latest figures are in: more than 100,000 people have visited the ITER site since work began in 2007 to clear and level land for the future scientific installation. In 2015, nearly 17,000 people passed through the ITER Visitors Centre, including some 7,000 schoolchildren.

Visits are open to all (contact the ITER Visit Team

at visit@iter.org).

104 kilometres


The heaviest components of the ITER machine will be shipped to the nearest Mediterranean port and then transported along 104 kilometres of specially modified road known as the ITER Itinerary. The dimensions of these components are impressive: the heaviest will weigh nearly 900 tons including the

transport vehicle; the largest will be approximately four storeys—or 10.6 metres—high. Some will measure 9 metres across; others 33

metres long.

150 million °C

The temperature at our Sun's surface is 6,000°C, and at its core—15 million°C. Temperature combines with density in our Sun's core to create the conditions necessary for the fusion reaction to occur. The gravitational forces of our stars can not be recreated here on Earth, and much higher temperatures are necessary in the laboratory to compensate. In the ITER Tokamak, temperatures

will reach 150 million°C—or ten times the temperature at the core of our Sun.

23,000 tonnes

The ITER machine will weigh 23,000 tonnes. The metal contained in the Eiffel Tower (7,300 tonnes) can't compare ... the ITER Tokamak will be as heavy as three Eiffel Towers. The vacuum vessel alone, with its ports, blanket and divertor, weighs 8,000 tonnes. Approximately one million components will be integrated into this complex machine.

2x the thrust of a Space Shuttle lift-off

The structure of the ITER central solenoid—the large, 1,000-tonne electromagnet in the centre of the machine—must be strong enough to contain a force equivalent to twice the thrust of the Space Shuttle at take-off. That's 60 meganewtons, or over 6,000 tonnes of force.

360 tonnes

Facilities for \$10,00 for Faces . Profession in \$10,00 for faces

Every one of the ITER Tokamak's 18 D-shaped toroidal field coils will weigh 360 tonnes. The coils will be unloaded from oceangoing vessels before being transported along the ITER Itinerary on radio-controlled transporters. 360 tonnes is the approximate weight of a fully

https://www.iter.org/factsfigures 2/4

loaded Boeing 747-300 airplane. Each toroidal

field coil is 14 metres high and 9 metres wide.

400,000 tonnes

The Tokamak Seismic Isolation Pit (pictured) houses the anti-seismic foundations of the future Tokamak Complex. Some 400,000 tonnes will rest on the lower basemat, including the Complex foundations and walls and the ITER Tokamak. 400,000 tonnes is more than the weight of New York's Empire State Building.

42 hectares

The rain features

Saint aul-lez-I

made level platf

This 42-hectare
by 480 metres v

soccer fields. B

Sain feature of the 180-hectare ITER site in Sain feature of the 180-hectare ITER site in Sain feature plurance, southern France, is a manmade level platform that was completed in 2009. This 42-hectare platform measures 1 kilometre long by 480 metres wide, and compares in size to 60 soccer fields. Building began in August 2010.

193.51.56.24

5,000 people

At the peak of ITER construction in 2019-2022, 5,000 people are expected at ITER (on the worksite and in the offices), up from 1,400 in 2014. The projected rise is due to a sharp increase in the number of construction workers on the platform.

Scroll to Top

The goal of the ITER fusion program is to produce a net gain of energy and set the stage for the demonstration fusion power plant to come. ITER has been designed to produce 500 MW of output power for 50 MW of input power—or ten times the amount of energy put in. The current record for released fusion power is 16 MW (held by the European JET facility located in Culham, UK).

60 metres

The Tokamak Building will be slightly taller than the Arc de Triomphe in Paris. Measuring 73 metres (60 metres above ground and 13 metres below), it will be the tallest structure on the ITER site.

The IT with a pourrent volume Europe

840 cubic metres

The ITER Tokamak will be the largest ever built, with a plasma volume of 840 cubic metres. In currently operating tokamaks, the maximum plasma volume is 100 cubic metres—achieved by both Europe's JET and Japan's JT-60.