How to Make a Big International Project Happen: Lessons from ITER

- Scientific challenge
- United strategy
- Site selection
- Clear mission
- Organization
- Cost
- Research coordination

James W. Van Dam

Institute for Fusion Studies University of Texas at Austin

US Burning Plasma Organization US ITER Project Office

2007 APS April Meeting (April 14)

ITER will demonstrate scientific and technological feasibility of fusion

USBPO

- ITER ("the way" in Latin) is essential next step in development of fusion
 - Today: 10 MW(th) for 1 sec with gain
 ~ 1
 - ITER: 500 MW (th) for >400 sec with gain ≥10
- The world's biggest fusion energy research project ("burning plasma")
 - 15 MA plasma current, 5.3 T
 magnetic field, 6.2 m major radius,
 2.0 m plasma minor radius, 840 m³
 plasma volume, superconducting
 - 10B Euros to build and then operate for 20 years (first plasma in 2016)
- An international collaboration
 - 7 international partners, representing 50% of world's population

Cutaway view of ITER

ITER is a tokamak: confines plasma with helical magnetic fields in donut shape

History of the ITER project

ITER—an international project

- Implementing agreement signed November 21, 2006, between EU, Japan, Russia, USA, Korea, China, India
 - Signing ceremony hosted by President Chirac at Elysée Palace
 - Dr. Raymond Orbach (Under-Secretary for Energy) signed for US

USBPO

LESSON:

A big international project is motivated by a big international scientific challenge

Producing a self-sustaining fusionheated plasma is a grand challenge

USBPO

- **1928** Fusion reactions explain energy radiated by stars [Atkinson & Houtermans]
- **1932** Fusion reactions discovered in laboratory [Oliphant]
- **1935** Fusion reactions understood as Coulomb barrier tunneling [Gamow]
- **1939** Theory of fusion power cycle for stars [Bethe–Nobel Prize 1967]
- **1950** US approval to develop hydrogen bomb "Super" [Teller]
- **1951-52** Invention of the tokamak [Tamm & Sakharov]
 - **1950's** US Project Sherwood (classified) on controlled thermonuclear fusion
 - **1958** 2nd UN Atoms for Peace Conference (Geneva): magnetic fusion research was declassified
 - **1968** Russian tokamak results with high temperature presented at IAEA Fusion Energy Conference
- **Since then**: Worldwide explosion in tokamak research, culminating in TFTR (US), JET (EU), and JT-60U (Japan) experiments

What is a "burning" plasma?

Sun

Energy stored in nucleus Hydrogen Hydrogen Uranium Nuclear mass

USBPO

• "Burning" plasma = ions undergo thermonuclear fusion reactions, which supply self-heating to the plasma

- The energy output E_{out} is huge (global implications):
 E_{out} = 450 x E_{in}
- The required energy input E_{in} is also large:

```
20 keV = 200 million °K
```

D-T fusion

D-D

10²

ION ENERGY (KeV)

Nuclear cross sections

103

-28) 10

10

(3.5 MeV) (14.1 MeV) (3.5 MeV) (14.1 MeV) Energy/Fusion: ε_f = 17.6 MeV

Fusion gain Q

Initial D-T experiments

USBPO

• Joint European Torus (JET)

- "Preliminary Tritium Experiment" (1991): P_{DT} > 1 MW
- Subsequently: Q = 0.9 (transient break-even), Q = 0.2 (long pulse)
- 16 MW fusion power

Tokamak Fusion Test Reactor (TFTR)

- Dec 1993-Apr 1997: 1,000 discharges with 50/50 D-T fuel
- P_{DT} = 10.7 MW, Q = 0.2 (long pulse), favorable isotope scaling, self heating by α-particles, α-driven instabilities, tritium and helium "ash" transport, tritium retention in walls and dust, safe tritium h

Status of magnetic fusion

USBPO

Lawson Diagram:

- Achieved T_i required for fusion, but need ~10 X nτ_E
- Achieved $n\tau_E \approx 1/2$ required for fusion, but need ~10 X T_i
- No experiment has yet entered the burning plasma regime
 - Such an experiment is the next logical step forward on the path to fusion energy
 - The world fusion program is technically and scientifically ready to proceed now with a burning plasma experiment

×

New features in a burning plasma (1)

USBPO

Dominant self-heating (exothermic)

 Flexibility in present-day experiments to control current, pressure, and rotation profiles by means of external RF power and neutral beams is dramatically reduced in a burning plasma experiment

High performance requirements

- Sustained, simultaneous achievement of high temperature and density, good macroscopic stability, good confinement of plasma energy
- Robust plasma-wall facing components and diagnostics that can withstand high heat and neutron wall loadings

Long pulse length

- BP experiment should have pulse length long compared to the current redistribution time ($\tau_{pulse} >> \tau_{CR}$) to investigate resistively equilibrated current and pressure profiles in the presence of strong alpha heating

New features in a burning plasma (2)

Strong coupling

 The critical elements in the areas of transport, stability, boundary physics, energetic particles, heating, etc., will be strongly coupled nonlinearly due to the fusion self-heating

Size scaling

- Due to much larger volume than present experiments, size scaling becomes important for confinement
- Large population of high-energy alpha particles
 - Different behavior from thermal ions
 - Affect stability and confinement

USBPO

Cross sections of present EU D-shape tokamaks compared to the cross section of ITER

α particles can excite Alfvén waves

α particles from D-T fusion (3.5 MeV) resonate with shear Alfvén waves:

USBPO

 $v_{\alpha} \ge v_{A}$

- One of these instabilities is the Toroidal Alfvén Eigenmode (TAE)
 - Analogy to band-gap theory in solid-state crystals (Mathieu equation, Bloch functions): "fiberglass wave guide"

Zoology of *AE instabilities:

- Ellipticity Alfvén Eigenmode (EAE)
- Triangularity Alfvén Eigenmode (NAE)
- Reversed-Shear Alfvén Eigenmode (RSAE), "Cascade"
- Global Alfvén Eigenmode (GAE)
- Compressional Alfvén Eigenmode (CAE)
- etc.
- Could cause anomalous loss of d's
 - Reduce self-heating; wall thermal loading

ITER stability to Alfvén eigenmodes

USBPO

- Alfvén Mach number (v_{α}/v_{A}) and pressure (β_{α}) for ITER α -particles have similar values as in existing experiments
- However, ITER's large size [I.e., small-wavelength (a/ρ_{*fast} >> 1) regime] implies presence of many potentially unstable modes
 - Could cause outward redistribution/loss of α's (domino-effect "avalanche")

USBPO

LESSON: Strategize as a united community

Community planning exercises

USBPO

- **1998 April** Forum for Major Next-Step Experiments (Madison, WI)
- **1999 June** Fusion Summer Study (Snowmass, CO)
 - **2000 Dec** Burning Plasma Science Workshop I (Austin, TX)
- **2001 May** Burning Plasma Science Workshop II (San Diego, CA)
- **2002 July** Fusion Summer Study "Major Next Steps in Fusion" (Snowmass, CO)

Advisory committee assessments

2001 Sept	Review of Burning Plasma Physics (FESAC panel report)
2002 Sept	A Burning Plasma Program Strategy to Advance Fusion Energy (FESAC panel report)
2003 March	A Plan for the Development of Fusion Energy (FESAC panel report)
2004 March	Fusion in the Era of Burning Plasma Studies: Workforce Planning for 2004 to 2014 (FESAC panel report)
2004 April	<i>Burning Plasma: Bringing a Star to Earth</i> (National Research Council, Burning Plasma Assessment Committee)
2005 April	Scientific Challenges, Opportunities, and Priorities for the US Fusion Energy Sciences Program (FESAC panel report)
2006 June	Planning for US Fusion Community Participation in the ITER Program (USBPO, Energy Policy Act Task Group)

Alignment of the stars

USBPO

2002 June	At a meeting with fusion program leaders, Dr. Raymond Orbach (Director, DOE Office of Science) noted that "the Fusion stars are aligned if we are ready for the energy route" because he likes fusion, John Marburger (OSTP) likes fusion, President Bush and Prime Minister Tony Blair like fusion, and Congress likes fusion.
2003 Jan	President Bush announced that the US would rejoin ITER.
2003 Nov	<i>Facilities for the Future of Science: A Twenty-Year Outlook</i> (DOE Office of Science) – listed ITER as the #1 priority.
Recent years	Soaring domestic energy prices, geopolitical concerns about fossil fuel availability, climate change.
2005 Dec	<i>Rising Above The Gathering Storm: Energizing and Employing America for a Brighter Economic Future</i> (report of the Augustine commission, National Academies of Science).
	Leads to American Competitiveness Initiative and a presidential proposal for large increases in science and technology R&D budgets.
2007 Feb	Bipartisan support for science in FY07 Continuing Resolution budget.

Ŷ

USBPO

LESSON: Deciding on the site requires patience

Time line to host ITER

2001 May	Bid submitted by Canada (Toronto).			
2001	Bids submitted by France, Spain, and Japan.			
2003 Nov	EU support concentrated on France; Canada withdrew. Deadlocked vote by ITER partners between Japan and EU.			
2004 June	Japan increased its bid by \$1B; EU matched it.			
2004 Dec	EU hinted it would build ITER by itself if no 6-party agreement.			
2004-2005	EU and Japan negotiated privately. Japan agreed to withdraw its bid, in return for a concessions package: 20% of the research positions while providing only 10% of the expenses; EU to subsidize half the cost for certain new fusion facilities in Japan ("Broader Approach"): EU support for for Japanese candidate as ITER director-general)			
2005 June	Unanimous vote by ITER partners to accept EU bid			
2006 May	Initialing of ITER Agreement. Transmittal to Congress for 120-day review required by Energy Policy Act of 2005			
2006 Nov	Signing of ITER Agreement in Paris			

Ŷ

Japanese proposed site

- Rokkasho-mura, in Aomori Prefecture (northern part of the main island of Japan)
- Located in Mutsu-Ogawara Development Area, close to nuclear fuel cycle facilities.

(a) Aomori Prefecture

(b) Rokkasho Area

EU-Japan Broader Approach

ITER—final location

- To be built in Cadarache, France
 - Near Marseille (in Provence-Alpes-Cote d'Azur region)
 - First plasma operation in 2016, D-T operation in 2021

USBPO

LESSON: *Have a clear mission for the project*

ITER design goals

USBPO

Physics:

- ITER is designed to produce a plasma dominated by *α*-particle heating
- produce a significant fusion power amplification factor (Q ≥ 10) in long-pulse operation
- aim to achieve steady-state operation of a tokamak (Q = 5)
- retain the possibility of exploring 'controlled ignition' ($Q \ge 30$)

Technology:

- demonstrate integrated operation of technologies for a fusion power plant
- test components required for a fusion power plant
- test concepts for a tritium breeding module

ITER strategy

- Conservative design
 - Maintain flexibility to use advances
- Step-wise research program:
 - HH, DD, DT, I_p , heating power, etc.
- Flexibility
 - Wide operation space, replaceable divertor and first wall, heating and current drive
- Diagnostics
- Experimental control tools:
 - ECCD (for NTM control)
 - Saddle coils and H&CD (for RWM control)
 - Current drive (for TAE control), gas injection and neural network (for disruption control)
 - Pellet injection (for ELM control)

USBPO

Research agenda for ITER

₩ —		B		- 1750		USBPC)
20	05 2010	0 201	Ch Agenda to 15 20	20 20	25 20	30 20	35
Phases of ITER Development Fusion Science Campaigns	DESIGN SUPPORT	PRE-OPERATIONS	COMMISSIONING First Plasma H	HIGH GAIN DT	MODEST GAIN DT LONG FUS PULSE, NONINDUCTIVE TES	ION TECHNOLOGY	
The Integrated Burning Plasma System	High energy ga long pulse inductive scenarios for ITER Deve Develop integrated plas	in High energy g steady-state scenarios for ITER dop integrated plasma mode sma control	yain I	Achieve high Ach gain long pulses gain in ITER cap Study alpha h Establish integrated m Control complex, burn	eve modest steady-state ability eating effects odel on ITER ing plasmas in ITER	High duty cycle operation in burning plasma	
Macroscopic Plasma Physics	Design suppression coils for pressure limiting instabilities	Develop disruption avoidance and mitigation methods Specify rf systems to stabilize confinement limiting instabilities	Mitigate disruptions in ITER Suppres limiting in ITER	s confinement Instabilities	Stabilize pressure limiting instabilities in ITER		
Waves and Energetic Particles	Resolve rf and microwave issu Investigate energetic pa	Specify Up oes of H&CD s for ITER article instabilities Develop alpha p	grade ystems article diagnostics	Achieve 1 current dr Understand instabilities driv	00% noninductive ive in ITER ven by alpha particles		
Multi-Scale Transport Physics	Understand electron he Develop turb Decide how to spin the Understand t	at transport ulence diagnostics for ITER ITER plasma transport barriers		Understand transport in the Control how the ITER plasm Use transport b to achieve high	burning plasma regime a spins arrier physics gain in ITER		
Plasma-Boundary Interface	Understand edge pedee Identify approaches to i the impact of edge inst Understand rol in divertor p	stal physics minimize abilities le of density physics	Achieve a sufficie Implement suppres Understand how	nt edge pedestal for high gair edge instability ssion in ITER to project edge physics			
Fusion Engineering Science	Study first wall material Participate in a test blar Develop advanced fueli Support superconducti Develop rf sources and Develop diagnostic tect	l options nket module program ing for ITER ing magnet construction I wave launchers Use i hniques	Handle unprecedented pow Dep Provide central fueling in IT Assess the performano rf systems to control the plas	er exhaust Operate v bloy, operate, study test blank TER e of power-plant scale magne ma Deploy turbulence and alpha	vith sufficiently low tritium inven at modules in ITER ts diagnostics	lory Operate very long pulses for blanket test	

USBPO

LESSON: Organization can be as much of a challenge as science

ITER—international organization

ITER top leadership

USBPO

Director-General:

Dr. Kaname Ikeda

- Deputy Minister for Science and Technology, Japan
- Executive Director, National Space Development Agency
- Ambassador to Croatia

Principal Deputy Director-General & Project Construction Leader

Dr. Norbert Holtkamp

- Research Group Head, S-Band Linear Collider, DESY
- Division Director, Spallation Neutron Source, ORNL

US support to the ITER international organization (IO)

USBPO

US secondees (as of 3/07)

	IO Staff Support (Employees and Secondees)	Cash Contribution*
FY 2007:	~ 20 man years	\$6 M
FY 2008:	~35 man years	\$20M
FY 2009:	~40 man years	\$30M

ITER staffing projection

Other challenges

USBPO

Communication

- Embrace modern video-conferencing techniques
- Integrated document management

Intellectual property rights to data

- Who owns ITER's photons?
- Management styles, cultural differences, flag waving, ...
- Multi-national safety regulations
- Import/export regulations
- Outreach for public visibility
 - Public relations and educational material, movies, photos, brochures, web site, posters, ...

USBPO

LESSON: Carefully determine the cost and how to pay for it

Cost of ITER

USBPO

• ITER EDA design was completed in 1996

- US withdrew from ITER in 1998 due to projected cost
- ITER FEAT team (led by Dr. R. Aymar, now CERN director) redesigned ITER and reduced cost to 4.57B euros (at 2000 prices)
 - US re-entered ITER project in 2003
 - In-kind contributions calculated in units of IUA ("international unit of accounting"): 1 IUA = \$1,000 (in 1989 currency value)
- Lehman costing of the US in-kind contributions to ITER construction led to congressional \$1.122B cap on the US share
 - US costing includes contingency and labor costs; sometimes not included in costing done by other ITER partners
 - Project management culture is needed: planning & scheduling, progress tracking, financial reporting, cost control strategy, risk mitigation, ...

Paying for ITER

- 5/11ths from European Union as the host ITER partner
 - 1/11th in-kind contribution from each of the other six international partners (China, India, Japan, Korea, Russia, US)
 - India joined as the 7th ITER partner in late 2005; hence there is now a 10% contingency

ITER construction cost-sharing

LESSON:

Coordinate, facilitate, and promote burning plasma research in the US domestic program

Overseeing the US burning plasma effort

ITER-related research activities

USBPO

• US Burning Plasma Organization (USBPO)

- Integrated on national level with the International Tokamak Physics Activity (ITPA) expert topical groups
- Coordinates with US Virtual Laboratory for Technology

• FY07 ITER Physics Tasks

- 76 submitted, 14 selected by USBPO to work on (work is underway)

• ITER design review

- Last baseline design was established in 2001; this is now being updated
- US scientists submitted 13 Issue Cards
- ITER set up 8 Working Groups with members from the 7 partner teams
- US experts for the "urgent issues" have been identified, and program managers have analyzed impacts of redirecting personnel effort; this activity is off-project (i.e., subsidized from domestic program budget)
- "Baseline Design 2007" to be submitted to ITER Council Nov. 29, 2007

Example: Integrated analysis of RWM, ELM, and error field coils for ITER

USBPO

Macroscopic Stability USBPO Topical Group

Questions:

- Is there a single magnetic-field coil set that can provide good control of Edge Localized Modes, error fields, and Resistive Wall Modes in ITER?
- If it exists, what are the I, V, power/cooling requirements for such a coil set?

Upper/lower port plug coils (#2 and #6 are different from original design

- 1. Error field correction coils
- 2. Coils on inner vessel surface
- 3. Coils around blanket modules
- 4. Mid-plane port-plug coils
- 5. On TF, above/below mid-plane
- 6. Coils on upper/lower port plugs

Example: Startup flexibility for ITER

USBPO

Integrated Scenarios USBPO Topical Group

- Main issue
 - Can ITER produce target plasma suitable for advanced regimes (hybrid, steady-state)?

Discharge Phases of Interest

- **Objective:** Demonstrate range of safety factor (current) profiles that can be produced using:
 - heating/CD timing
 - density ramping
 - divert time
 - L-H mode transition time

Example:

Alpha particle/fast ion issues for ITER

Energetic Particles USBPO Topical Group

Activity #1:

 Quantify flux and localization of fast ion loss in ITER in presence of ripple and Alfvén eigenmodes

Activity #2:

• Assess capabilities and needs in fast ion and Alfvén eigenmode diagnostics

USBPO

- ITER β=0 equilibrium with TF ripple
 - Finite beta analysis needs PF currents
 - Include ferritic inserts

USBPO

FINAL LESSON: Be prepared to learn more lessons

References for burning plasmas

USBPO

- Final Report–Workshop on Burning Plasma Science: Exploring the Fusion Science Frontier (2000) http://fire.pppl.gov/ufa_bp_wkshp.html
- Review of Burning Plasma Physics (Fusion Energy Sciences Advisory Committee, 2001) http://fire.ofes.fusion.doe.gov/More_html/FESAC/Austinfinalfull.pdf
- Burning Plasma: Bringing a Star to Earth (National Academy of Science, 2004)
- Plasma Physics and Fusion Energy, J. P. Freidberg (Cambridge Univ Press, 2007)
- *Progress in the ITER Physics Basis*, to be published in Nuclear Fusion (2007)

ACKNOWLEDGEMENTS: M. Bell, D. Campbell, R. Fonck, R. Hazeltine, G. Janeschitz, G. Navratil, N. Sauthoff, E. Synakowski, and USBPO team