

What Happened to Cold Fusion?

Michael C.H. McKubre, Ph.D. SRI International

"Whether it's improving our health or harnessing clean energy, protecting our security or succeeding in the global economy, our future depends on reaffirming America's role as the world's engine of scientific discovery and technological innovation"

President Barak Obama

January 2010

The World of Condensed Matter Nuclear Science

Terminology

Problems, Progress and Prospects

Reactions in General

Organization of the Field

BIG Unresolved Questions

Terminology

Cold Fusion: Original and recognized name, but incomplete description
Low-Energy Nuclear Reactions: "Low" is a relative and unclear term
Lattice Enabled Nuclear Reaction: Clear and specific, but very new concept
Lattice Assisted Nuclear Reaction: Also accurate, but not widely used
Chemical Assisted Nuclear Reactions: Many chemists like this
Solid State Nuclear Fusion
Cold Fusion Phenomena
Cold Fusion Nuclear Reactions

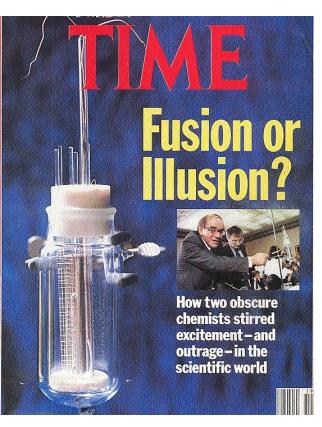
Cold Nuclear Transmutations: A Russian favorite

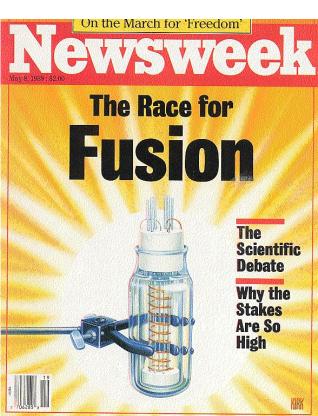
New Hydrogen Energy: A major Japanese government program

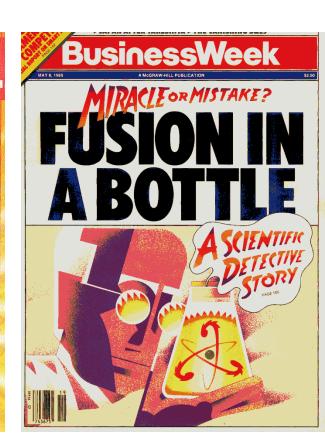
Metal Deuterium Energy: A current program in Japan

Fleischmann-Pons Effect: Clear and encompassing

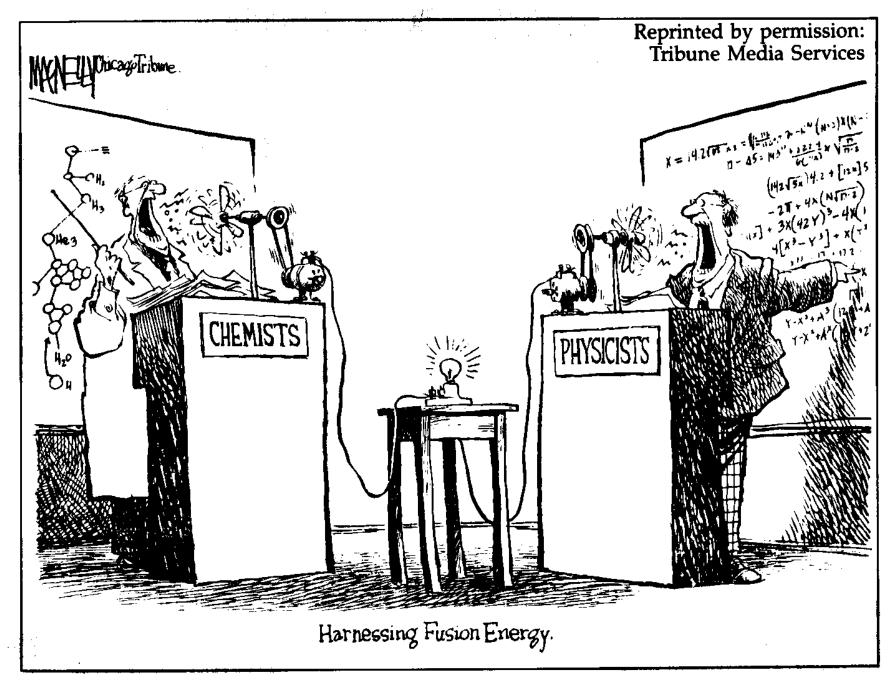
SANER: <u>SA</u>fe <u>N</u>uclear <u>E</u>nergy <u>R</u>elease


The subject is a part of the field called Condensed Matter Nuclear Science There is an International Society for CMNS in the UK: www.iscmns.org

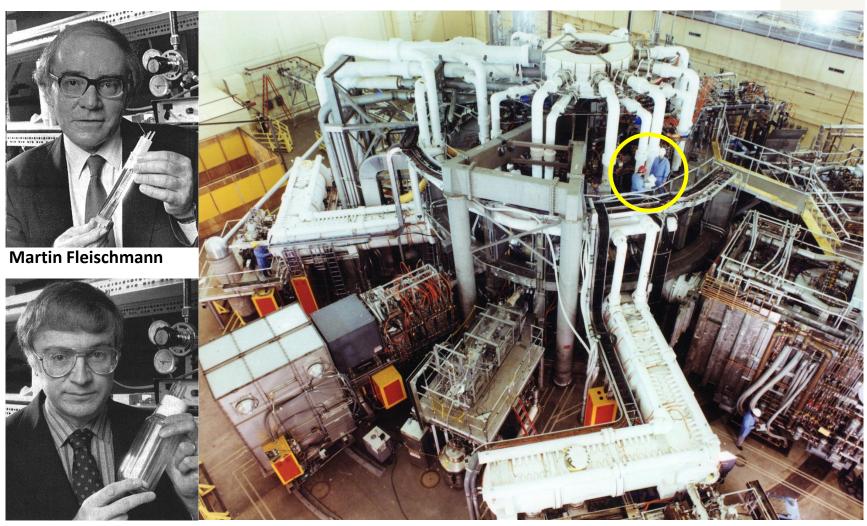

Problems


- Potential Importance for Energy
- Polarization of Scientists
- Diverse Mistakes
- Technical Complexity
- Flows of Money and Information
 - disrupted early and remain poor

Magazine Cover Stories

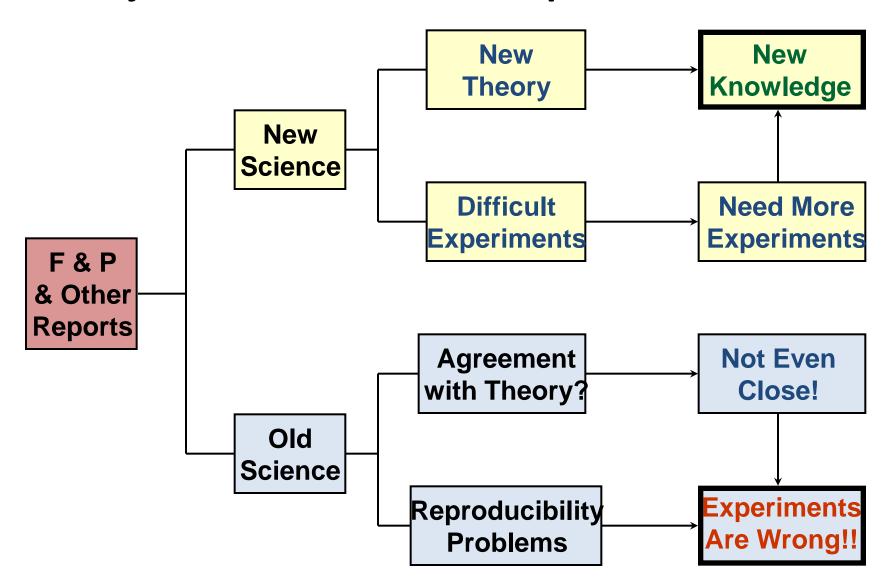

May 1989

Truly Extraordinary Interest



Research and Development Magazine (July 1989)

Tokomak Fusion Test Reactor [TFTR]


Princeton University

1989

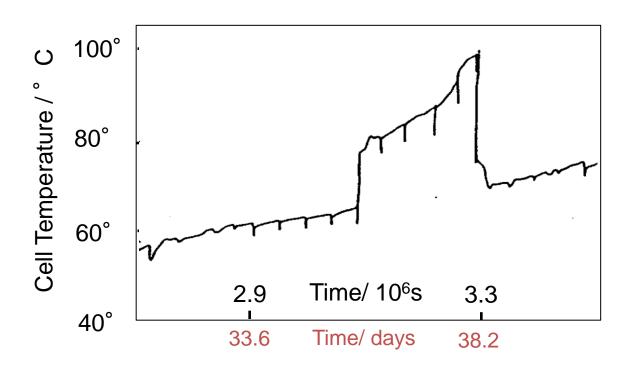
Stanley Pons

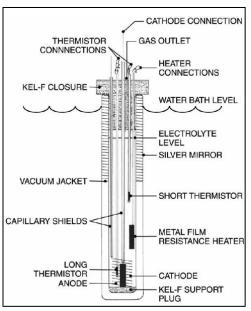
A Major Problem with the Experimental Situation

Two Major Parts of the Field Now

- Electrochemical loading of Deuterons into Palladium
 - The initial Fleischmann-Pons approach
 - Most work in the field has been in this class
- Gas loading of Protons into Nickel
 - Work began by Piantelli in early 1990s
 - Approach used by Rossi in recent years
 - Recent results at SRI

FPE Experiments, Electrochemistry and Calorimetry

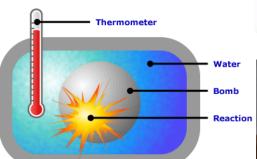

Fleishmann and Pons early results

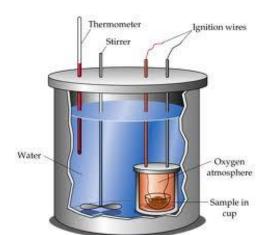

Calorimeters

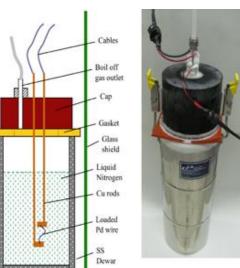
Electrochemistry and loading

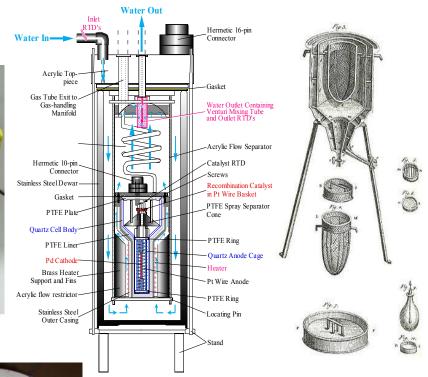
SRI cells and results

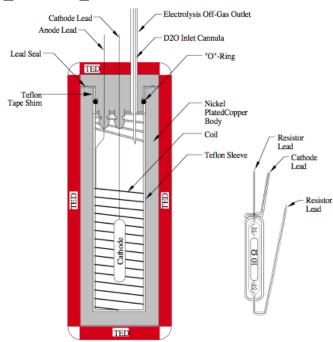
Early Data on Cell Temperature

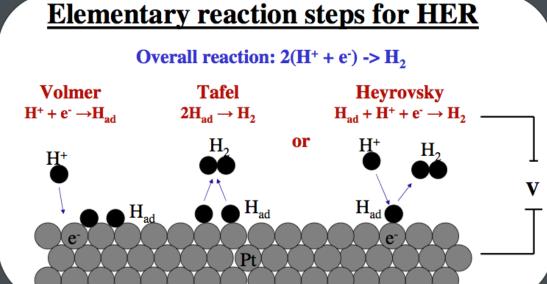



S. Pons, M. Fleischmann, C. Walling and J. Simpson International Patent Publication No. 90/10935 (1990)


Calorimeters


Bomb Calorimeter





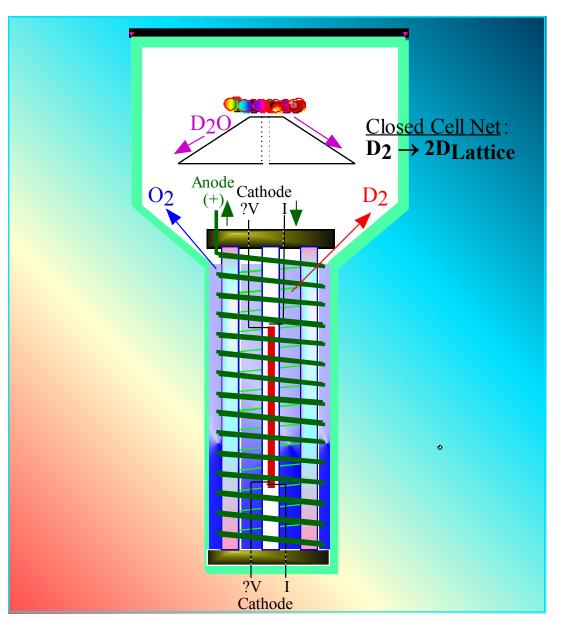
Hydrogen Evolution Reactions [HER]

In under 3 minutes

Volmer

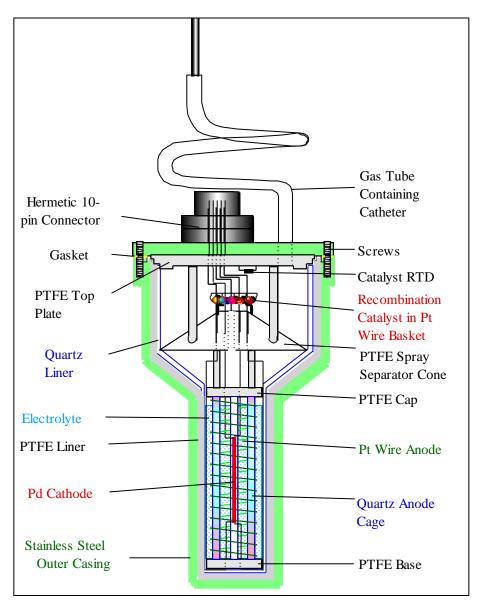
Heyrovsky

Tafel


In Base, for Pd

ı	Volmer	$H_2O + e^- \Rightarrow OH^- + H_{ad}$	(1)
ı	Tafel	$H_{ad} + H_{ad} \Rightarrow H_2$	(2)
ı	Heyrovsky	$H_{ad} + H_2O + e^- \Rightarrow OH^- + H_2$	(3)
ı	Loading	$H_{ad} \Rightarrow H_{ab}$	(4)
ı	Anode	$2OH \rightarrow H_2O + 2e + O_{ad}$	(5)
	Anode recombination:	$O_{ad} + O_{ad} \Rightarrow O_2$	(6)
	Molecular recombination:	$2H_2 + O_2 \Rightarrow 2H_2O$	(7)

Loading Cell and Reactions


Wires:

- 1-3 mm in diameter
- 3-5 cm in length
- 1M LiOD Electrolyte

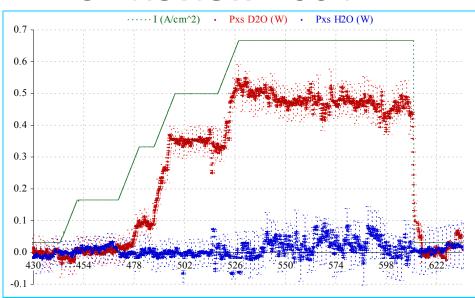
SRI Quartz Calorimeter and Degree of Loading

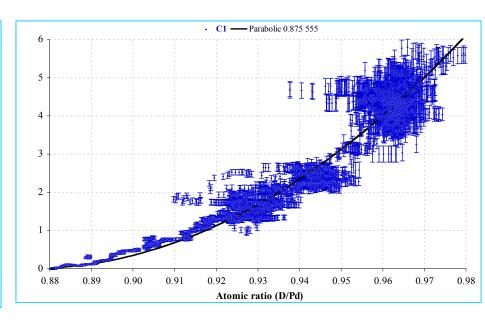
(DoL) Cell

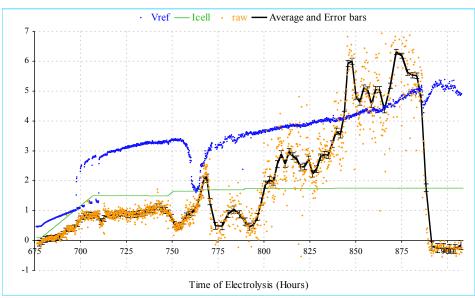
SRI Labyrinth (L and M) Calorimeter and Cell

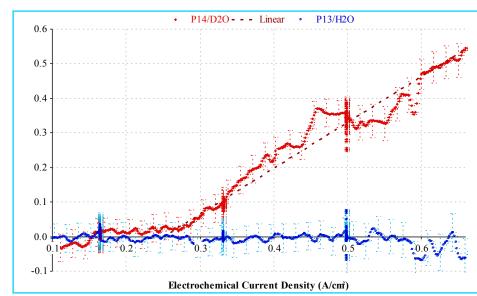
Accuracy: $\pm 0.35\%$

Operation:

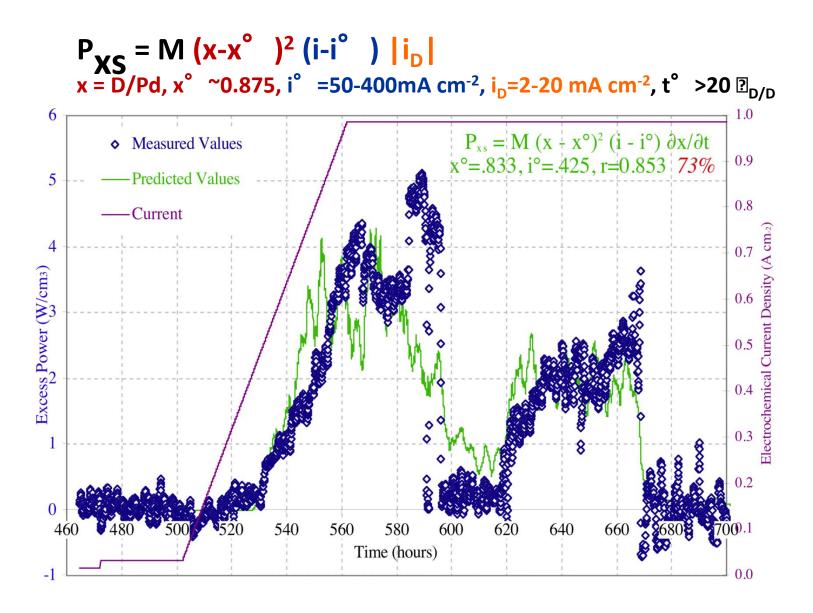

100 mW - 30W


Stability:

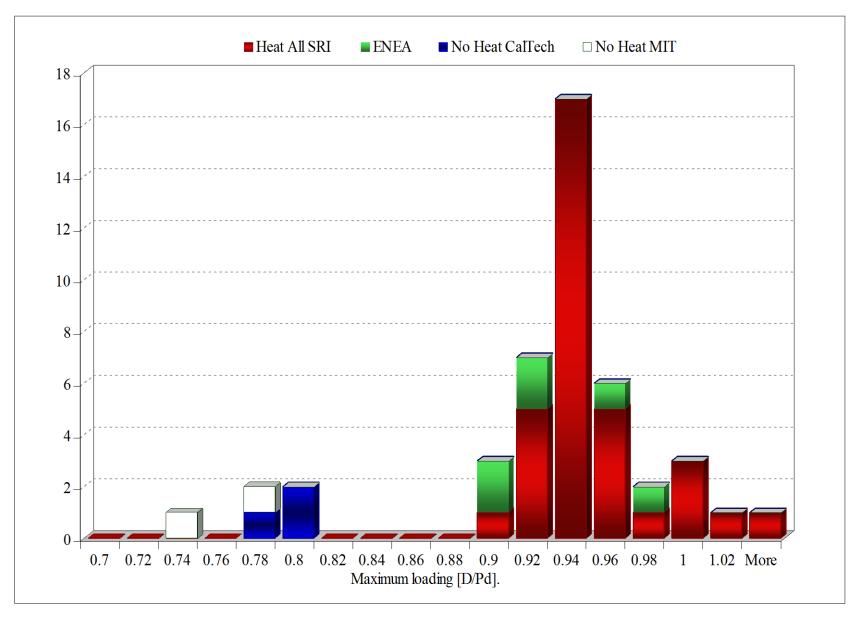

> 1000 hours


SRI >100,000 Hours of Precision Calorimetry using this and other Calorimeters

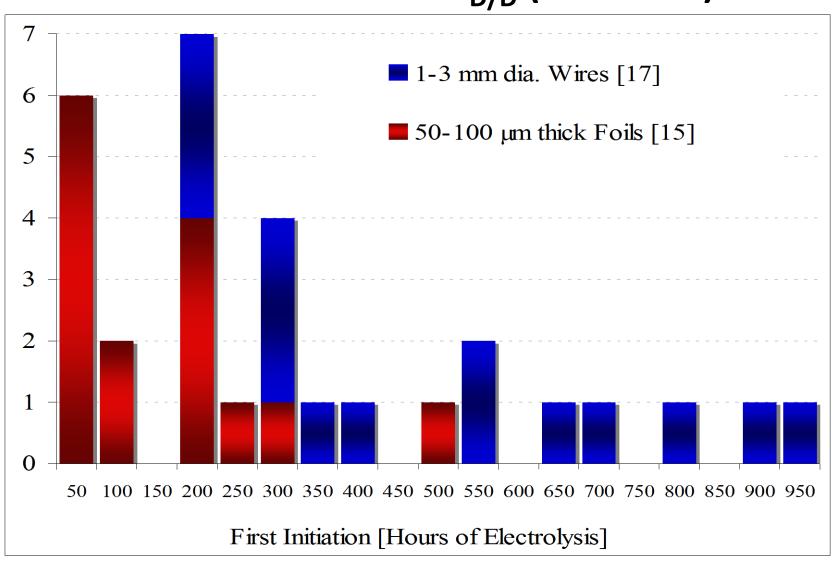
DoE Review 2004



A Predictive Equation


Necessary but Not Sufficient....

Necessary conditions:


- Heat correlated with:
 - Electrochemical current or current density
 - D/Pd loading
 - V_{ref.} surface potential
 - Pd metallurgy
 - Laser stimulus
- For 1mm diameter Pd wire cathodes:

$$P_{xs} = M (x-x^{\circ})^{2} (i-i^{\circ}) \frac{\partial x}{\partial t}$$

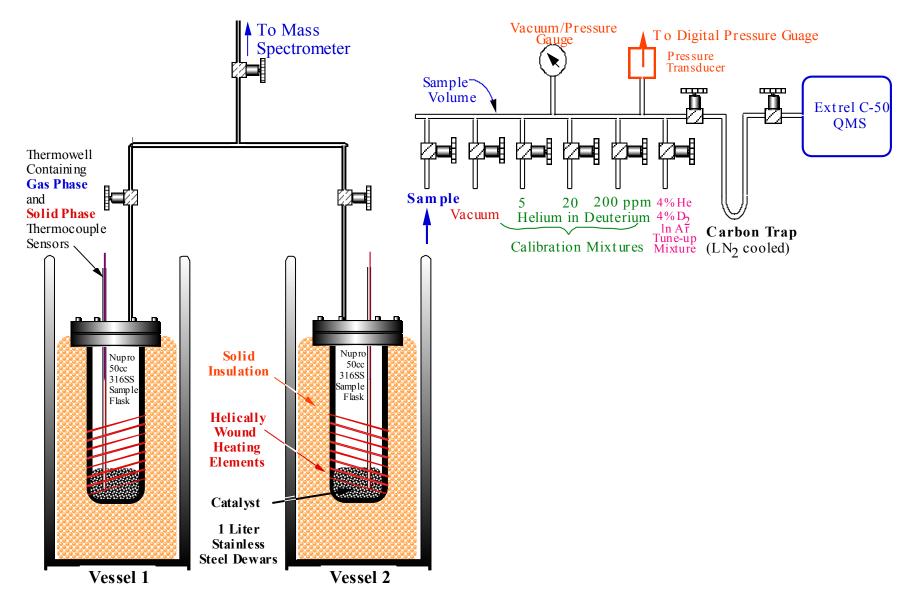
 $x^{\circ} = 0.84-0.88, i^{\circ} = 250-425 \text{mA cm}^{-2}, t^{\circ} > 200 \tau_{D/D}$

"Achieve High Maximum D/Pd Ratio (Loading)"

"Maintain High Average D/Pd Ratio (Loading) For times >> 20-50 times $\tau_{\text{D/D}}$ (Initiation)"

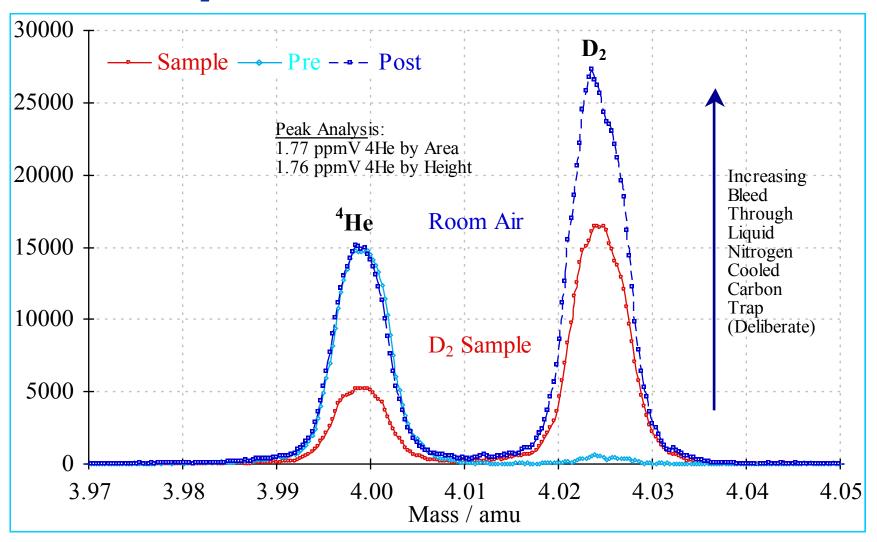
Gas Loading Experiments, Pd/D₂ and Ni/H₂

SRI results – Les Case

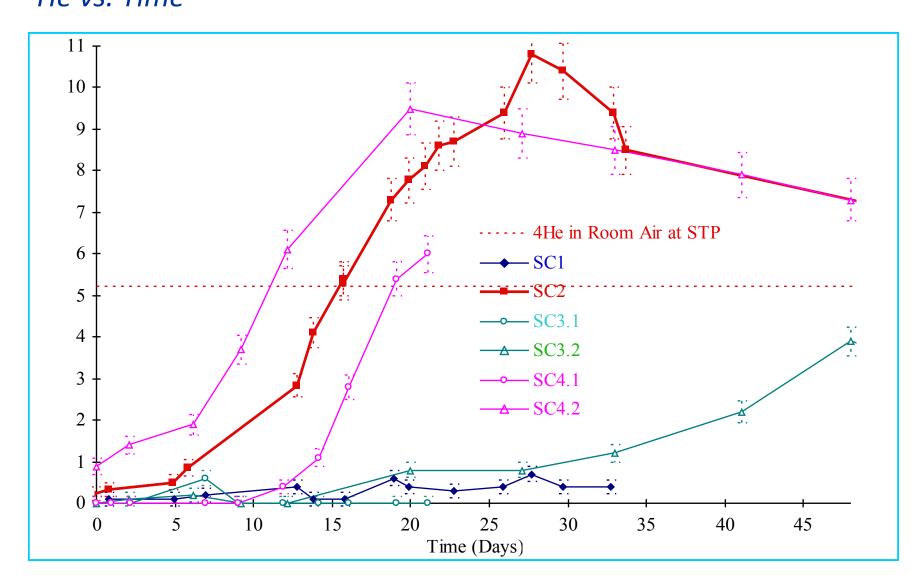

Heat and Helium

SRI gas calorimeter

Piantelli – Rossi – Commercialization?

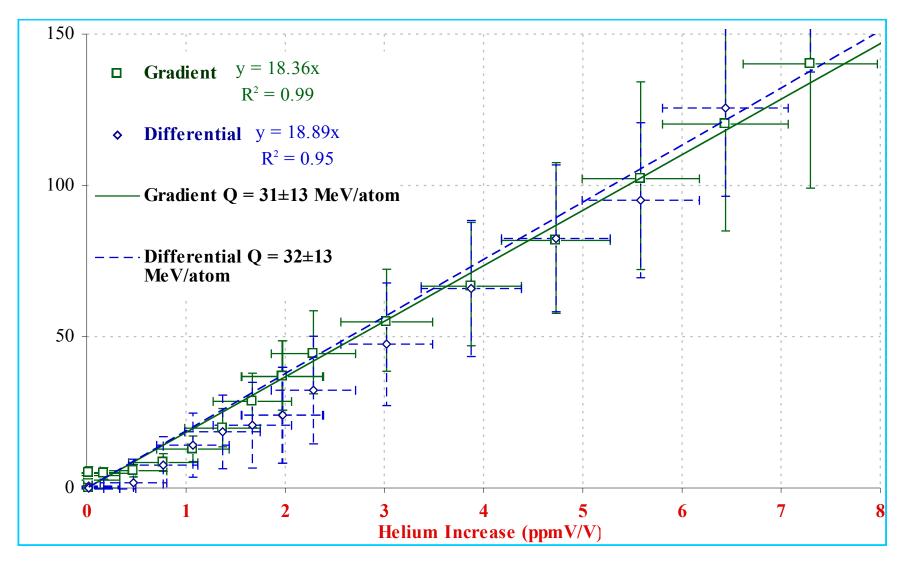

Case Cell Studies:

 H_2 and D_2 Gas with Pd/C Catalyst



Extrel QMS:

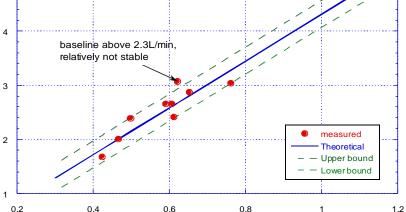
Resolution of D_2 and ⁴He



Case:
⁴He vs. Time

Case:

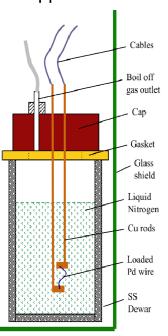
"Q"-Value - Energy vs. ⁴He


Phase Change Calorimetry:

Liquid Nitrogen Boil-Off

Measurements:

$$Q_o = (\delta m/\delta t) [C_{vap.}]$$


mL N₂ gas

Input energy (J)

Calibration with Joule Heater and Unloaded Pd Wires

Issues:

Heat Leaks (In)
Baseline, Baseline Drift

Phase Change Calorimetry:

Results and Conclusions

Table 5: Summary of the cryogenic calorimeter test results for loaded PdD_x and PdH_x wires

Wire#	Composition	Final ratio	x	Input energy (J)	Output energy (J)	Excess energy (J)	Excess%
8	PdD_x	1.77	0.88	0.12 ± 0.01	0.7 ± 0.12	0.6 ± 0.13	500 ± 100
9	PdH_x	1.27	~1	0.68 ± 0.01	0.7 ± 0.12	0.1 ± 0.13	8 ± 18
10	PdH_x	1.16	>1	0.64 ± 0.01	1.0 ± 0.12	0.3 ± 0.13	50 ± 19
11	PdH_x	1.18	>1	0.37 ± 0.01	0.49 ± 0.06	0.12 ± 0.07	32 ± 16
12	PdD_x	1.58	0.98	0.71 ± 0.01	0.84 ± 0.06	0.13 ± 0.07	18 ± 8
13	PdD_x	1.7	0.93	0.94 ± 0.01	1.22 ± 0.06	0.28 ± 0.07	30 ± 6
14	PdD_x	1.65	0.95	0.63 ± 0.01	0.70 ± 0.06	0.07 ± 0.07	10 ± 10
15	PdD_x	1.62	0.96	0.53 ± 0.01	0.51 ± 0.06	-0.02 ± 0.07	-4 ± 11
17	PdD_x	1.61	0.97	0.50 ± 0.01	0.70 ± 0.06	0.20 ± 0.07	40 ± 12
18	PdD_x	1.79	0.9	0.82 ± 0.01	1.25 ± 0.06	0.43 ± 0.07	52 ± 7
19	PdH_x	1.28	~1	0.10 ± 0.01	0.37 ± 0.06	0.27 ± 0.07	270 ± 60
20	PdH_x	1.31	~1	0.61 ± 0.01	0.66 ± 0.06	0.05 ± 0.07	8 ± 10

Table 7. Summary of the calorimetric test results for Pd/D_x co-deposited Ag wires.

Wire#	Diameter (µm)	Material	PdSO ₄ added (ml)	Input energy (J) ± 0.01	Measured energy (J) ± 0.06	Excess energy (J) ± 0.07	Excess %
33	50	Ag/PdD _x	8	0.31	0.84	0.53	170 ± 23
34	50	Ag/PdD_x	14	0.98	1.21	0.23	23 ± 7
36	50	Ag/PdD_x	16	0.48	0.96	0.48	100 ± 15
41	50	Ag/PdD_x	15	0.55	0.52	-0.03	-5 ± 13
46	50	Ag/PdD_x	12	0.52	0.77	0.25	48 ± 13

Table 8. Calorimetry results summary for co-deposited NiH(D)_x wires.

Vire #	Composition	Codep film thickness (µm)	Input energy (J)	Measure d energy (J)	Excess energy (J)	Excess %
47	Ni/NiH _x	75.5	0.91 ± 0.01	1.7 ± 0.06	0.79 ± 0.07	87±8
48	Ni/NiH _x	67	1.57 ± 0.01	1.55 ± 0.06	-0.02 ± 0.07	-1 ± 4
49	Ni/NiH _x	62	4.53 ± 0.01	5.56 ± 0.06	1.03 ± 0.07	23 ± 2
50	Ni/NiH _x	20.5	0.87 ± 0.01	1.28 ± 0.06	0.41 ± 0.07	47 ± 8
59	Ni/NiD _x	36.5	0.25 ± 0.01	0.76 ± 0.06	0.51 ± 0.07	204 ± 28
60	Ni/NiD _x	33	0.32 ± 0.01	0.81 ± 0.06	0.49 ± 0.07	153 ± 22
61	Ni/NiD _x	29	1.59 ± 0.01	2.45 ± 0.06	0.86 ± 0.07	54 ± 4

Table 6. Summary of the calorimetric test results for co-deposited Pd wires.

Wire#	Diameter (µm)	Composition	PdSO ₄ added (ml)	х	Input energy (J) ± 0.01	Measured energy (J) ± 0.06	Excess energy (J) ± 0.07	Excess %
25	50	PdH _x /PdH _x	10	0.92	0.74	0.99	0.25	34±9
23	50	PdD_x/PdD_x	1	0.85	0.44	0.73	0.29	66 ± 16
24	50	PdD_x/PdD_x	3.5	0.92	0.29	0.61	0.32	110 ± 24
26	50	PdD_x/PdD_x	5.5	0.95	0.47	1.26	0.79	168 ± 16
29	50	PdD_x/PdD_x	3	0.91	0.59	0.88	0.29	49 ± 12
30	50	PdD_x/PdD_x	6	0.94	0.73	1.99	1.26	173 ± 10
31	50	PdD_x/PdD_x	9	0.94	0.89	1.92	1.03	116 ± 8
32	50	PdD_x/PdD_x	8	0.96	0.93	2.23	1.30	140 ± 8
38	250	PdD_x/PdD_x	3	0.88	0.98	2.20	1.22	124 ± 7
39	250	PdD_x/PdD_x	13	0.89	0.89	1.39	0.50	56 ± 8
40	250	PdD_x/PdD_x	10	0.92	3.13	3.51	0.38	12 ± 2
42	250	PdD_x/PdD_x	5	0.76	5.08	8.98	3.90	77 ± 1
43	250	PdD_x/PdD_x	10	0.84	1.82	2.56	0.74	41 ± 9

Calorimeter accurate and precise.

Precision reduced by baseline drift (heat leaks).

12/12 PdD_x on PdD_x (codeposit) produced Excess Heat Largest amount 3.9 J for thicker (250 μ m) wire.

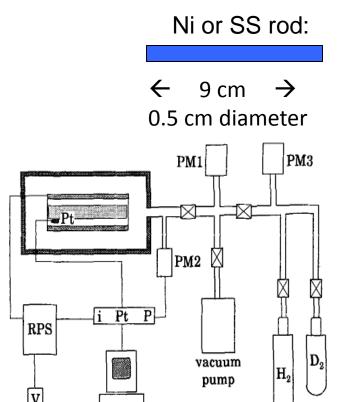
2/3 Ni/NiH_x produced Excess Heat

Largest amount 0.79 J or 87 \pm 8 % .

It is suggested that "the nickel/deuteride or mixed nickel deuteride/hydride system may be an appropriate material to produce excess energy"*.

The Italians

Piantelli


Rossi

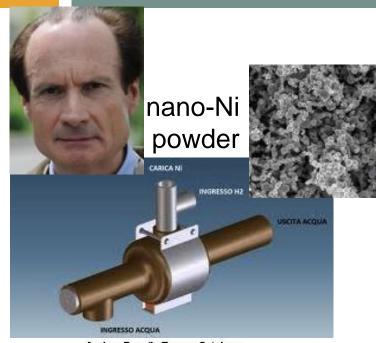
The October 6, 2011 demonstration

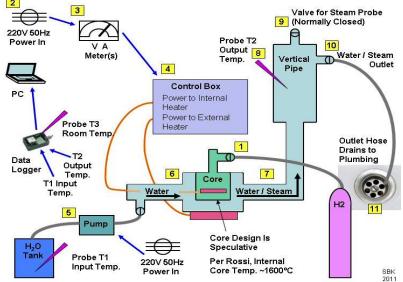
Professor Francesco Piantelli

University of Siena

- 1993 excess power from H₂ (gas) / Ni rods (later bars) at T > 400° C
- 1994 Patent (3 more in process)
- P_{In} 140 W; P_{Excess} 20 W 50 W
- Best cases:
 - 278 days, 900 MJ, (37.5 W)
 - 319 days, 600 MJ, (21.8 W)
- On <u>one</u> occasion
 - Able to reduce P_{ln} 140 W to 0 (2W)
 - Maintain P_{Out} 140 W > 300° C
- Neutrons, Gammas, Charged Particles...

Andrea Rossi E-Cat


Energy Catalyzer



Rossi Core

Andrea Rossi's Energy Catalyzer (Draft schematic reviewed and confirmed by Rossi on June 14, 2011)

Andrea Rossi "Energy Amplifier" (II)

AmpEnerco Run II

- September 25, 2009, New Hampshire
- 64 liters H₂O
- $-T_{ln} 23^{\circ} C, T_{ln} 46^{\circ} C, time 4 hours$
- Average P_{In} <40 W, P_{Out} ~400 W, Gain ~10

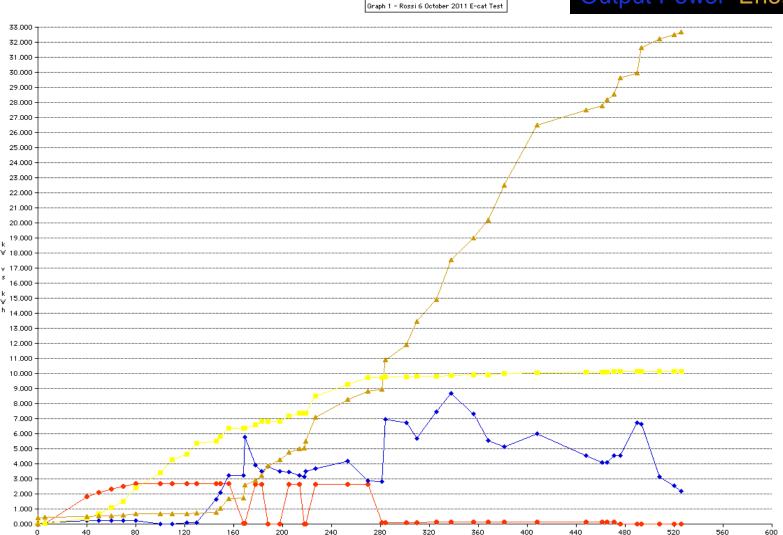
Bologna II Jan 14, 2011

- 45 minutes generating steam
- Average P_{In} ~1 kW, P_{Out} 12 kW, Gain 12.7

Bologna III Feb 14, 2011

- 18 hours, single phase
- P_{In} 1.2 kW (10 mins) then 100 W, P_{Out} 15 kW, Gain 150
- H₂ consumption 4 g

Andrea Rossi "Energy Amplifier" (III)


Input Electrical Power, Energy
Output Power Energy

Pin (k¥)

Pout (k¥)

Ein (kWh)

▲ Eout (k¥h)

Elapsed Time (min)

Experimental Summary

- Each of the types of results individually indicates that nuclear reactions occur in diverse experiments at modest temperatures.
 - Measurements of large excess heat
 - Systematics seen for heat production
 - Helium can be produced (³He and ⁴He)
 - Heat-helium can be correlated
 - Tritium can be produced
 - Neutrons measured in bursts
 - Observations of X-and γ-Rays
 - MeV-energy particles measured
 - Craters in cathodes measured
 - Hot spots measured on cathodes
 - New elements measured ?
 - Possible commercial opportunity ??

The database is robust and the observed effects must be due to nuclear reactions

Conclusions

"An unexpected source of heat can be observed in the D/Pd System when Deuterium is loaded electrochemically into the Palladium Lattice, to a sufficient degree."

It is possible to initiate nuclear reactions with chemical energies...

The reactions yield significant power and energy.....

Current Major Scientific Problems:

- Reproducibility and controllability
- Lack of quantitative understanding

Exciting (Potentially Historic) Possibilities:

- Distributed nuclear power sources
- Negligible prompt radiation
- Negligible radioactive waste

Many Potential Applications:

- Clean water ?
- Home heating and maybe electricity ??
- Portable power for electronics ???
- Transport ????

Thank you!

Funding Support:

EPRI, MITI, DARPA, DTRA

The speaker is also very much indebted to a group of scientists and engineers which had as its core: Esperanza Alvarez, Yoshiaki Arata, Jianer Bao, Les Case, Jason Chao, Bindi Chexal, Brian Clarke, Dennis Cravens, Steve Crouch-Baker, Jon McCarty, Irving Dardik, Arik El Boher, Ehud Greenspan, Peter Hagelstein, Alan Hauser, Graham Hubler, Nada Jevtic, Dennis Letts, Shaul Lesin, Robert Nowak, Tom Passell, Andrew Riley, Romeu Rocha-Filho, Joe Santucci, Maria Schreiber, Stuart Smedley, Francis Tanzella, Paolo Tripodi, Robert Weaver, Vittorio Violante, Kevin Wolf, Sharon Wing and Tanya Zilov.

SRI International

Headquarters: Silicon Valley

SRI International

333 Ravenswood Avenue Menlo Park, CA 94025-3493 650.859.2000

Washington, D.C.

SRI International

1100 Wilson Blvd., Suite 2800 Arlington, VA 22209-3915 703.524.2053

Princeton, New Jersey

SRI International Sarnoff

201 Washington Road Princeton, NJ 08540-6449 609.734.2553

Additional U.S. and international locations

www.sri.com

The ICCF Series of Conferences

<u>AMERICA</u>	<u>EUROPE</u>	<u>ASIA</u>
1. Salt Lake City, Utah	2. Como, Italy	3. Nagoya, Japan
4. Maui, Hawaii	5. Monaco	6. Sapporo, Japan
7. Vancouver, B.C.	8. Lerici, Italy	9. Beijing, China
10. Cambridge, Mass.	11. Marseilles, France	12. Yokohama, Japan
14. Washington, D.C.	13. Sochi, Russia	16. India
	15. Rome, Italy	17. Korea Aug 2012

Other Conferences

12 in Russia, 6 in Japan, 5 in Italy and many sessions at various society conferences

Department of Energy Reviews

- 1989 Review: Doomed to Fail
 - Done while the field was changing rapidly and confused.
 - Many people were protecting their Intellectual Property.
- 2004 Review: Limited Progress
 - Well organized with competent reviewers.
 - Mixed results and little impact within the government.

BIG Unresolved Questions about LENR

- Are the reactions only nuclear, only atomic, or both?
- Is there one mechanism active or are there multiple processes?
- Do the reactions occur only on the surface of materials or also in the bulk (volume) of the materials?
- What, if anything, is common to electrochemical and gas loading experiments that have exhibited excess power and heat?
- What is the root cause of experimental irreproducibility?
- What external factors can be used to initiate and control LENR?