Transmutation Reactions Induced by Deuterium Permeation through Nano-structured Pd Multilayer Thin Film

Yasuhiro Iwamura

Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., Japan 3-3-1, Minatomirai, Nishi-ku, Yokohama 220-0012

2012 ANS Winter Meeting and Nuclear Technology Expo, November 11-15, 2012, San Diego, USA

MITSUBISHI HEAVY INDUSTRIES, LTD.

1. Introduction

Merits of Our Transmutation Method

Conventional Transmutation

Requires a large apparatus such as an accelerator and a nuclear reactor

Permeation Induced Transmutation

Nuclear Transmutation can be induced by deuterium permeation through our original nanostructured Pd multilayer film

D₂ gas permeation through nano-structured Pd complex

Reactions observed so far in MHI

1)Alkali metals; Electron Emitter 2)2d, 4d, 6d; α capture reactions

© 2012 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

 $d^{4d(2\alpha)} \rightarrow \frac{141}{50} P$

 ${}^{4d(2\alpha)}_{38}Sr \rightarrow {}^{96}_{42}Mo$

 $^{138}_{56}Ba \rightarrow ^{150}_{62}Sm$

 $^{137}_{56}Ba \xrightarrow{6d(3\alpha)}{62} ^{149}Sm$

 ${}^{44}_{20}Ca \xrightarrow{2d(\alpha)}{}^{48}_{22}Ti$

 $^{184}_{74}W \xrightarrow{2d(\alpha)}_{76}Os$

 $4d(2\alpha)$

 $^{133}_{55}Cs$

Potential Applications

1) Nuclear Transmutation of Radioactive Waste

2) **Production of Rare Metals**

etc...

Generator

2. Original Experimental Method and Results

Experimental apparatus with XPS

Transmutation of Cs into Pr

Atomic Number +4 Mass Number +8

Mass Number Correlation between Ba and Sm

3. *In-situ* Measurement of Transmutation of Cs into Pr

Photo of the *in-situ* Experimental Setup

Experimental setup for in-situ measurement at SPring-8, which is one of the largest synchrotron radiation facilities. This setup enables us to observe elemental changes during D2 gas permeation by XRF (X-ray fluorescence spectrometry).

In-situ Measurement Set-up at Spring-8

ITSUBISH

Confirmation of Pr by *in-situ* measurement

ITSUBISH

4. Depth and Surface distribution of Transmuted Products

ITSUBISH

Detection of Localized Pr

Further smaller beam analysis of Pr

100 µm beam;SP-24

Smaller X-ray beam provides **more localized Pr distribution.**

50 µm beam;SP-24

Existence of hot spots?

5. Role of CaO

D⁺ Ion beam bombardment on metal target

Experimental Apparatus

Deuterium Density measured by D+ Ion Bombardment

U₅(eV)

Effect of Intermediate Layer

6. Transmutation of W into Pt or Os

Experimental Procedure

Transmutation of W into Pt or Os

© 2012 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

Counts

7. Increase of Products using an Electrochemical Method

Pr Dependence on D₂ gas pressure

Experimental Apparatus aiming Increase of D Density

Cs⁺ Ion Implantation to Pd/CaO/Pd film

SIMS Analysis; E006 Wide Spectra

ICP-MS Analysis; E006 Wide Spectra

ICP-MS Analysis; E006

SIMS (point) and ICP-MS (all surface) gave similar results

Different Tendency from D₂ gas permeation

© 2012 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

AITSUBISHI

Consideration on Compound Species

Possible compounds for mass 140

¹³⁸ Ba(71.7%)D	¹³³ Cs (100%) ⁷ Li (92.4%)	¹¹⁰ Pd ³⁰ Si(3.1%)
¹⁰⁶ Pd ³⁴ Si(4.3%)	¹⁰⁹ Ag(48.1%) ³¹ P(100%)	¹⁰⁴ Pd ³⁶ Ar(0.33%)
¹⁰² Pd ³⁸ Ar(0.06%)	¹¹⁰ Pd ²⁸ Si(92.3%)D	¹⁰⁸ Pd ³⁰ Si(3.1%)D
¹⁰⁵ Pd ³³ Si(0.8%)D	¹⁰² Pd ³⁶ Si(0.02%)D	¹⁰² Pd ³⁶ Ar(0.3%)D

Possible compounds for mass 139

¹³⁷ Ba(11.2%)D	¹³³ Cs (100%) ⁶ Li (7.6%)	¹¹⁰ Pd ²⁹ Si(4.7%)
¹⁰⁶ Pd ³³ Si(0.8%)	¹⁰⁴ Pd ³⁵ Cl(75.8%)	¹⁰² Pd ³⁷ Cl(24.2%)
¹¹⁰ Pd ²⁷ Al(100%)D	¹⁰⁶ Pd ³¹ P(100%)D	¹⁰⁵ Pd ³² S (94.9%)D
¹⁰⁴ Pd ³³ Si(0.8%)D	¹⁰⁵ Pd ³² Si(94.9%)D	¹⁰² Pd ³⁵ Cl(75.8%)D

Not explained consistently by these compounds

8. Replication Experiments

Presented at 17th International Conference on Condensed Matter Nuclear Science, Aug.12-17, 2012, Deajon, Korea

Presented at 17th International Conference on Condensed Matter Nuclear Science, Aug.12-17, 2012, Deajon, Korea

Concluding Remarks

- 1. Low energy nuclear transmutations from Cs into Pr, Ba into Sm and W into Pt or Os have been observed in the Pd complexes, which are composed of Pd and CaO thin film and Pd substrate, induced by D₂ gas permeation.
- 2. Experimental data that indicates the presence of transmutation have been accumulated and experimental conditions for inducing low energy transmutation reactions are gradually becoming clear, although systematic experimental study is still insufficient.
- 3. Replication experiments have been performed by some researchers and similar results have been obtained. Potential applications would be expected for innovative nuclear transmutation method of radioactive waste and a new energy source.

Acknowledgements

I would like acknowledge Prof. A.Takahashi, **Prof. J. Kasagi**, Prof. K. Fukutani, Prof. M. Melich, Dr. K. Grabowski, Dr. F. Clelani **Prof. H. Yamada**, **Prof. S. Narita**, Dr. C. Nishimura, Mr. T. Itoh and Dr. S.Tsuruga for their supports and valuable discussions.

This work is supported by RIKEN and Japan Synchrotron Radiation Research Institute (JASRI), Japan Science Technolgy Agency(JST) CREST Program, and Thermal & Electric Energy Technology Foundation (TEET).

ITSUBISH

MITSUBISHI HEAVY INDUSTRIES, LTD.

Our Technologies, Your Tomorrow