Characteristics of excess heat in Pd|D₂O+D₂SO₄ electrolytic cells measured by Seebeck Envelope Calorimetry Wu-Shou Zhang Institute of Chemistry, CAS, Beijing, China

1. Introduction
2. Experimental setup
3. Calorimetric results
4. Conclusions

1. Introduction

> What are key factors for reproducibility of excess heat?
 > (1) Temperature increment ∆T
 > (2) Pre-electrolysis

(1) Temperature increment

Pd ($0.25 \times 25 \times 25 \text{ mm}^3$). 3 A (0.24 A/cm^2). $Q_{ex} = 0.01 \pm 0.03 \text{ kJ}$ in 7.7 hr (Exp# 050925), $Q_{ex} = 4.44 \pm 0.97 \text{ kJ}$ in 7.5 hr (Exp# 051205). Zhang & Dash, Proc. ICCF13, p. 202.

(2) Pre-electrolysis

2nd run gave more excess heat than that of 1st run:

Pd	Run 1		Run 2	
#	Exp. #	$P_{\rm ex}/{\rm mW}$	Exp. #	$P_{\rm ex}/{\rm mW}$
A	050101	33 ± 13	050103	198 ± 16
С	060209	0	060211	108 ± 29
E	051127	0	051129	215 ± 56
F1	051012	371 ± 60	051015	461 ± 20
F2	051021	247 ± 87	051024	386 ± 38
Η	060404	50 ± 7	060406	129 ± 14
Η	060412	81 ± 21	060413	119 ± 11

Zhang & Dash, Proc. ICCF13, p. 202.

First run should be the activation process. This process is intended utilized in excess heat reproducibility.

2. Experimental setup

> 2.1. Calorimetric system
 > 2.2. Electrolytic Cell

2.1. Calorimetric system

Schematic of calorimetry system Zhang, Dash & Zhang, Proc. ICCF14; Zhang, Acta Thermochim. (submitted); Zhang, China Patent. 200910085862

Photo of system

2.2. Electrolytic Cell

Schematic of Pd|D₂O+D₂SO₄ electrolytic cell $(\phi_{in}4.2 \times 14 \text{ cm}^2)$

Photo of cell (ϕ_{in} 4.2 ×14 cm²)

Photos of Pd #1 ($0.25 \times 25 \times 25 \text{ mm}^2$) before (left) and after (right) electrolysis.

Photo of Pd|D₂O cell in SEC

3. Calorimetric Results

> 3.1. Calibration
> 3.2. Excess heat from Pd plate

3.1. Calibration and contrast experiments

3.1.1. Calibration using resistance heater 3.1.2. $Pt|D_2O$ electrolysis 3.1.3. dead $Pd|D_2O$ electrolysis 3.1.4. $Pd|H_2O$ electrolysis

3.1.1. Calibration using resistance heater

Input powers: 2 to 50 W (55 data) Duration: Jul 2008 to Sep 2009 $R^2 = 0.99997$, Residual Sum of Squares = 0.1661, mean square = 0.0031.

3.1.2. Pt|D₂O electrolysis

Calorimetry of Pt|D₂O system (Exp. #090824). $P_{in} = 10.819 \pm 0.007 \text{ W}, P_{ex} = 1 \pm 24 \text{ mW}, 0.01\%$ (4.5 to 7 hr); $Q_{in} = 278.20 \pm 0.06 \text{ kJ}, Q_{ex} = -0.29 \pm 1.25 \text{ kJ}, -0.10\%$; Including 84 mg of mass loss: $Q_{ex} = 0.95 \pm 1.26 \text{ kJ}, 0.34\%$.

3.1.3. dead Pd|D₂O electrolysis

Calorimetry of dead Pd|D₂O system (#090622). $P_{in} = 8.9556 \pm 0.0029 \text{ W}, P_{ex} = -0.4 \pm 22 \text{ mW}, -0.004\%$ (5 to 8 hr); $Q_{in} = 262.38 \pm 0.05 \text{ kJ}, Q_{ex} = -0.55 \pm 0.90 \text{ kJ}, -0.21\%$; Including 22 mg of mass loss: $Q_{ex} = -0.22 \pm 0.90 \text{ kJ}, -0.08\%$.

3.1.4. Pd|H₂O electrolysis

Calorimetry of Pd|H₂O system (#091002). $P_{in} = 8.824 \pm 0.004 \text{ W}, P_{ex} = 6 \pm 29 \text{ mW}, 0.07\% \text{ (4 to 9 hr)};$ $Q_{in} = 287.98 \pm 0.06 \text{ kJ}, Q_{ex} = -0.51 \pm 1.16 \text{ kJ}, -0.18\%;$ Including 38 mg of mass loss: $Q_{ex} = 0.06 \pm 1.17 \text{ kJ}, 0.02\%.$

3.2. Excess heat from Pd plate

3.2.1. Excess powers on pretreatments3.2.2. Excess powers for different samples3.2.3. Excess powers and cell's resistance

3.2.1. Effects of pre-electrolysis on excess powers

Sample activation, pre-electrolysis in an open cell (Exp. # 081220). 3.5 A \times 2 hr + 3.7 A \times 1.5 hr + 3.9 A \times 1 hr + 4 A \times 0.5 hr. $T_{max} = 110$ °C.

Excess power after activation (Exp. # 081223). Pd#1, 3 A (0.24 A/cm²)× 8 hr, $T_{SEC} = 25.00 \,^{\circ}C$ $P_{ex,max} = 0.220 \pm 0.016 \,^{\circ}W$ (4.5 to 5 hr); $P_{ex,stable} = 0.120 \pm 0.018 \,^{\circ}W$ (7 to 8 hr). $Q_{ex} = 2.46 \pm 0.33 \,^{\circ}KJ$.

Left: Sample activation, pre-electrolysis in an open cell (Exp. # 090521). Pd#2, 3.5 A × 3 hr + 3.7 A × 1 hr + 3.9 A × 1.3 hr + 4 A × 2.7 hr. $T_{max} = 99$ °C. Right: Excess power after activation (Exp. #090525). Pd#2, 3 A (0.24 A/cm2) × 8 hr, $T_{SEC} =$ 25.00 °C, $P_{ex} = 0.120 \pm 0.020$ W (5 to 6 hr).

3.2.2. Excess powers for different samples

Summary of different Pd samples

Pd #	size/mm ³	P _{ex,max} /mW	Reproducibilit y	Sample source	
1	$0.25 \times 25 \times 25$	220 ± 16	21/35	Alfa Aesar, cold rolled,	
2	$0.25 \times 25 \times 25$	120 ± 20	6/7	Provided by John Dash	
3	$0.05 \times 11 \times 31$	0	0/3	GRINM, Beijing, cold rolled	
4	$0.50 \times 10 \times 30$	0	0/5	Provided by D.L. Wang	

3.2.3. Excess powers and cell's resistance

(1) *R* vs. *T* (no excess heat)
(2) *R* vs. *T* (excess heat)

R = cell's resistanceT = cell's temperature

> (1a) R vs. T without excess power produced (Pd#1, Exp. #090902, $P_{ex} = -15 \pm 25$ mW).

(1b) R vs. T without excess power produced (Pt cathode, P_{ex} = 1±24 mW, Exp. #090824).

(2b) R vs. T with excess power produced
 (Pd#1, Exp. #081223, P_{ex} = 0.220 ± 0.016 W).

(2b) *R* vs. *T* with excess power produced (Pd#2, Exp. #090525, $P_{ex} = 0.120 \pm 0.020$ W).

4. Conclusions

> (1) Clear evidence of excess heat in $Pd|D_2O + D_2SO_4$ electrolytic system.

(2) Pre-electrolysis in open cells is an easy way to reproduce excess heat in subsequent electrolysis in closed cells.

 (3) Cell's resistances change irreversible with cell's temperature when excess heats appear.

Acknowledgments

Prof. J. Dash, Z.-L. Zhang
NSFC 20673129 & 20973185
973 Program 2009CB226113

Thank you