

#### High Temperature Proton Conductors

HTPCs came in the early 1980s when Iwahara and co-workers showed that some ceramic perovskite-related oxides presented proton conduction in hydrogen or vapor containing atmosphere at high temperatures



#### **Proton Conduction Mechanism**



The proton conduction mechanism in HTPCs involves two different steps, they are:

✓ Proton Incorporation

✓ Proton Mobility

#### Mechanism: Proton Incorporation

The most important reaction related to the formation of protonic defects is the dissociative adsorption of water

$$H_2 O \rightarrow H^+ + O H^-$$

Proton

Form a covalent bond with a lattice oxygen Idroxyde Ion

Fill the oxygen vacancies ( $V_o^{...}$ )



Using a Kroeger-Vink notation

 $H_2O + V_o^{\bullet \bullet} + O_o^x \rightarrow 2(OH)_o^{\bullet}$ 

The saturation value of the protons uptake is equal to twice the initial oxygen vacancy concentration Mechanism: Proton Mobility

#### Grotthuss Mechanism $\rightarrow$ hopping mechanism

- the H-bonded protons form an OH group (OH<sub>o</sub>)
- protons move around  $O_o^x$  and jump to the neighbour  $O_o^x$

Quantum molecular dynamics (MD) symulations and IR spectra analysis → possible proton diffusion path.



- a. The proton moves from position 1 to position 2 by its <u>rotational motion</u> around oxygen atom A.
- b. Upon bending of the Ce-O bond, the proton can reach position 3, where a <u>hydrogen bond</u> to oxygen atom B can be formed.
- c. At this position the proton can move to position 4 if the energetic barrier for proton transfer is reduced by shortening the bond length between A and B.
- d. After a successful transfer, the <u>Ce-O bending</u> <u>motion</u> eventually breaks the hydrogen bond and the proton ends up in position 5.

## Applications

Proton conductor materials have received many attentions as promising materials for several applications



## Processing of proton conductors (Y-doped BaCeO3)

#### Solid state reaction

In general those oxides were synthesized by the conventional solid state reaction in which the oxide precursors are milled and calcined at high temperature

<u>Several drawbacks</u>  $\rightarrow$  the high sintering temperature creates inhomogeneities in the chemical composition

#### Soft chemical processes

 decrease the sintering temperature and processing time

- good control of morphology and chemical composition
- high purity and ultrafine powders



#### X-ray diffraction patterns BCY<sub>20</sub> powders





### Dilatometric Measurement



## EIS of the BCY<sub>20</sub>\_with Agar method



### Electrochemical Impedance Spectroscopy (EIS)

EIS is a very versatile tool to characterize intrinsic electrical properties of any material and its interface

#### Definition

- impedance (Z) is a general circuit parameter that measure the ability of a circuit to resist the flow of the electrical current
- is usually measured using small excitation signal
- is represented as a complex number

$$Z(\omega) = Z' + jZ'' = Z_{\text{Re}} + jZ_{\text{Im}}$$

#### EIS – Basics in FC application



- A frequency response analyzer (FRA) is used to improve a small amplitude AC signal to the fuel cell via the load.
- The AC voltage and current response of the fuel cell is analyzed by the FRA to determine the impedance of the cell at that particular frequency.
- Physical and chemical processes occurring within the cell (such as electron and ion transport) have different characteristic time-constants and therefore are exhibited at different AC frequency

• When conducted over a broad range of frequencies, impedance spectroscopy can be used to identify and quantify the impedance associated with these various processes.

## EIS - Basics in FC application

The EIS data are analyzed using equivalent circuit, that are essentially composed by

|           |                 | Defining Relation     | Impedance                                         |
|-----------|-----------------|-----------------------|---------------------------------------------------|
| Resistor  |                 | $V = I \times R$      | $Z_R = R$                                         |
| Capacitor | $\dashv \vdash$ | $I = C \frac{dV}{dt}$ | $Z_C = \frac{1}{j\omega C} = -\frac{j}{\omega C}$ |
| Inductor  |                 | $V = L \frac{dI}{dt}$ | $Z_{L} = j\omega L$                               |
|           |                 |                       |                                                   |

• the resistors usually describe the bulk (bulk + grain boundary) resistance of the material to charge transport such as the resistance of the electrolyte to ion transport or the resistance of a conductor to electron transport  $\rightarrow Z_{Re}$ 

• capacitors and inductors are associated with space-charge polarization regions, such as the electrochemical double layer, and adsorption/desorption processes at an electrode, respectively  $\rightarrow Z_{Im}$ 

#### **Representation of Impedance Data**

EIS data for electrochemical cells are most often represented in Nyquist plot



The Nyquist plot is a complex plane that reports the **imaginary impedance**, which is indicative of the capacitive and inductive character of the cell, versus the **real impedance** (resistive part)

## Conclusions

HTPCs are promising material for several applications

 With the Agar procedure we are able to synthesized BCY at lower temperature

 A complete characterization of the material has been performed

high purity metal-oxides compounds

almost fully dense pellet

very good protonic conduction (10<sup>-2</sup> Siemens/m)

### Acknowledgments



 This work was supported by the Italian Ministry of Education, University and Research (MIUR)

Thanks are due the whole group of Materials Chemistry and Engineering in Tor Vergata & the group of Material Science and Engineering of the University of Florida

Thanks to my actual colleagues: Ing. S.Tosti and Dr. F. Borgognoni

# Thank you for your attention!