EXOTIC NUCLEAR PHYSICS: FROM COLD FUSION TO ANTIKAONIC NUCLEAR CLUSTERS

<u>Tullio Bressani</u>

Dipartimento di Fisica Sperimentale, Universita' di Torino Istituto Nazionale di Fisica Nucleare, Sezione di Torino

ICCF-15

15° International Conference on Condensed Matter Nuclear Science

Roma, October 5-9, 2009

SUMMARY

- 1. Introduction
- 2. The case of Antikaonic Nuclear Clusters (AKNC's)
- 3. Experimental results with K⁻
- 4. Experimental results with \overline{p}
- 5. Conflicting conclusions
- 6. Similarities and differences between the Cold Fusion and AKNC's scientific cases

1. Introduction

- Very active with my Group on experiments in Cold Fusion (gas loading, neutron and ⁴He detection) from 1989 to 1998

- Attended all ICCF from 1 to 7 (organized ICCF2)

- Activity stopped in 1999, mainly for not enough personal expertise in Condensed Matter Physics (I was always and I am a nuclear/particle physicist). Difficulty also in obtaining positions for young reaserchers

-Never denied the reality of Cold Fusion (for scientific case, not applications)

2. The case of Antikaonic Nuclear Clusters (AKNC's)

- Starting point: the interaction \overline{K} -N in the I=0 channel is strongly attractive at threshold 1986 S. Wychech NPA 450 (1986), 399c
- 1997 T. Waas, M. Rho e W. Weise,- NPA 617 (1997), 449

2000 – A.Ramos ed E. Oset, NPA 671 (2000), 401

• Different theoretical approaches but similar conclusions: B.E. ~20 \div 100 MeV but <u>large</u> Γ (100 MeV). Experimentally non interesting.

The start-up of the story:

2002 – Y. Akaishi e T. Yamazaki (recently involved in CF too!!), PRC 65 (2002), 0044005 B.E. 100 \div 200 MeV but small Γ (20 \div 30 MeV)

3. Experimental results with K⁻

Unexpected result (proton peak around 500 MeV/c) – momentum measured by TOF Narrow width<21 MeV \rightarrow resemblance with AY prediction, but not exactly

only dedicated experiment

Observation with experiments on Invariant Mass (Λ -p) system

Not dedicated experiment

p- Λ invariant mass [GeV/ c^2]

$(\Lambda-d)$ system

4. Experimental results with \overline{p}

М.І. Л-р

Not dedicated experiment

Invariant Mass $(\Lambda - d)$

5. Conflicting Results

We compare the results reported in experiments with k⁻ at rest (FINUDA) with those with \bar{p} (OBELIX)

Binding energies and widths:

		B(MeV)	Г (MeV)	Ref.
² _k H (k⁻pp)	K ⁻ at rest	- 115 9	- 67 15	PRL 94 (2005),212303
	p at rest	- 151.9 3.2±1.2(sist.)	<39.4 6.2	EPJ A 40 (2009),100878
	Theory	- 48	61	Phys. Rev.C 65 (2002), 044005
³ _k H (k⁻ppn)	K ⁻ at rest	- 58 6	-36.6 14.1	PLB 654 (2007),80
	p at rest	- 121 15	<60	Phys. Rev.C 65 (2002), 044005
	Theory	- 108	20	PLB 535 (2002),70

Even worse concerning the capture rates

Some other results by non-dedicated experiment (DISTO) also not in agreement

Other dedicated experiments approved and ready to run

E15 \rightarrow J-PARC K⁻ in flight \rightarrow I.M.+M.M.

FOPI : \rightarrow GSI pp-> pK⁺ $\Lambda \rightarrow$ I.M.+M.M.

Ratio of the theo./exp. published papers > 10

6. Similarities and differences between the Cold Fusion and AKNC's scientific case

	C.F.	AKNC
Applications	* * * *	*
Impact on media	* * * *	*
Scientific interest	* * * *	* * * *
Acceptance by theoreticians	*	***
Acceptance by experimetalist	**	****
Papers on Physics journals	*	****
Financement by Public Agencies	*	* * * *
Positions for young reaserchers	*	***
Interest by students	* * * *	***

Hope that in a (near) future C.F. physicists will again be part of the broad Nuclear Physicists community