Lithium Fluoride X-Ray Imaging Film Detectors for Condensed Matter Nuclear Measurements

R.M. Montereali¹, S. Almaviva¹, F. Bonfigli¹, E. Castagna², F. Sarto², M.A. Vincenti¹, V. Violante²

¹ENEA, Physical Technologies and New Materials Dept., C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

²Associazione Euratom-ENEA sulla Fusione, C.R. Frascati, V. E. Fermi, 45, 00044 Frascati (RM), Italy email: <u>montereali@frascati.enea.it</u> http://www.frascati.enea.it/fis/lac/solidstate/

Solid-state **green-red** light emitters based on LiF films thermally evaporated on **silicon** (left) and glass (right) substrates

15th International Conference on ICCF-15 Condensed Matter Nuclear Science

> Roma, Italy October 5 - 9, 2005

Introduction and motivation

We recently proposed an innovative

film-like soft-hard X-ray imaging detector based on photoluminescence (PL) of radiation-induced active color centers in Lithium Fluoride (LiF) thin layers, with High spatial resolution Large field of view Wide dynamic range Efficient photoluminescence readout process Easy handling: no development needs and no sensitivity to visible light Compatible with permanent protective layers and different substrates It is currently under further development in soft-hard X-rays for imaging applications in biology, photonics, material science, characterization of intense X-ray sources...

Outline

Introduction

Lithium Fluoride: material properties Primary and aggregate electronic defects in LiF

Experimental

LiF films: growth and characterization

X-ray irradiation and characterization of LiF crystals and films **Results**

Primary and aggregate color centers vs irradiation dose in LiF crystals X-ray imaging applications in LiF films: examples

Lithium Fluoride (LiF)

Color Centers (CCs): point defects in insulating materials **Alkali Halides (AH):** ionic crystals with fcc structure, optically transparent from near UV to IR.

LiF stands apart because it is almost non-hygroscopic; polycrystalline LiF films can be grown by thermal evaporation on different substrates; it can host CCs stable at RT; it can host laser active CCs tunable in a broad wavelength range in the visible and near IR. It can be colored only by ionizing radiation, like elementary particles and ions, as well as photons, such us EUV light, X-rays, γ rays and even intense ultra-short laser pulses.

	Nearest neighbour distance (Å)	2.013
	Melting point (°C)	848.2
	Density (g/cm ³)	2.640
	Molecular weight	25.939
	Refractive index @ 640 nm, RT	1.3912
ſ	Solubility (g/100g $H_2O(a)$ 25°C)	0.134
	Hardness (Knoop 600 g indenter)	102
	Transmission range (µm)	0.12 - 7

Irradiation of LiF gives rise to **stable formation** of **primary and aggregate CCs**, which generally coexist with often overlapping absorption bands.

Laser active color centers in LiF at RT

F center is an anion vacancy occupied by an electron; it is not an optically active centers in LiF. F_2 and F_3^+ centers are optically active F-aggregates consisting in two electrons bound to two and three close anion vacancies, respectively.

LiF film deposition by thermal evaporation

Polycrystalline films are grown by thermal evaporation on **amorphous** (glass, silica, silica on silicon, ...) and **crystalline** (LiF single crystals, NaF, MgF₂, silicon, ...) **substrates**. The **structural, morphological and optical properties of the films** are strongly dependent on the nature of the substrate \rightarrow the deposition parameters: T_s, t, R

 θ -2 θ diffraction patterns of LiF films grown on glass at T_s=30°C(LT) and 300°C(HT) with two different t.

Permanent fluorescent patterns based on F_2 and F_3^+ defects in LiF can be produced by using several X-ray sources in different configurations (contact mode, direct writing, projection mode, etc.)

ENEA

The permanent photoluminescent patterns, stored in the irradiated LiF samples, are observed by using **optical microscopes in fluorescence mode**. Irradiation with **blue** light excites the **visible photoluminescence of the F**₂ and **F**₃⁺ defects locally created in the areas previously exposed to the X-ray beam.

RT photoluminescence spectra of colored LiF crystals vs dose

The experiment

Surface plasmons (**polaritons**) are quantum of plasma oscillations created by the collective oscillation of electrons on a solid surface. They may be generated by mechanisms able to produce charge separation between Fermi level electrons and a background of positive charges (i.e. lattice atoms).

Sputtered Ni film previously loaded with hydrogen by electrolysis with 1 M Li_2SO_4 electrolyte in light water (40 minutes, current ranging 10 to 30 mA).

45 nm thick **Ni film**, on 1 mm thick **polyethylene** substrate **LiF film** (t=1.9 μm) on

1 mm thick glass substrate

The LiF film detector, consisting in a LiF film thermally evaporated on glass, has been mounted in close contact with the back-side of the hydride Ni sample, positioned on a rotating support at the selected reflectance minimum angle under a c.w. He-Ne laser (632.8 nm, 5 mW), coupled in the metallic layer trough a glass cylindrical lens placed on the Ni surface for an irradiation time of 3h.

R.M.Montereali, S.Almaviva, E.Castagna, T.Marolo, F.Sarto, C.Sibilia, M.A.Vincenti and V.Violante, in Condensed Matter Nuclear Sciences, Proc.12th Int. Conf. On Cold Fusion, Yokohama, Japan 27 Nov – 2 dec 2005, A. Takahashi, K. Ota and Y. Iwamura, eds., 2006, World Scientific, p.251-255.

CLSM investigation on exposed and blank LiF films

The coupled e.m. wave can produce coherent oscillations of the Fermi-level electrons in the metal Ni lattice, as its frequency is quasi-resonant with electronic plasma one. The excitation could produce local intense electric field, and X-ray emission at energies below the Ni K_{α} edge can take place.

2-D confocal image in fluorescence mode of the exposed LiF film on glass. Several lightemitting spots, closely grouped, with typical spatial dimension from tens to hundreds of micrometers, are detected.

3-D confocal image (60x) in reflection mode of a LiF film on glass (212x212 μ m²).

Conclusions

Promising results in X-ray imaging have been obtained for hard X-rays (8 keV)

Efficient formation of stable color centers in **LiF** crystals has been obtained. **Intense broad visible photoluminescence at RT** has been measured.

X-ray micro-radiography and microscopy images on LiF crystals and films have been obtained with a sub-micrometric spatial resolution.

The main features of these LiF films based **X-ray imaging detectors** are promising for many applications, including radiation detection in NFCM.

Zone plate X-ray micro-radiography confocal images on a 1.4 µm thick LiF film grown on a glass substrate irradiated by OXFORD microfocus. *S.Almaviva, F.Bonfigli, I.Franzini, A.Lai, R.M.Montereali, D.Pelliccia, A.Cedola, S.Lagomarsino, Appl. Phys. Lett.* 89(2006)54102-4