Anomalous Heat Generation in Charging of Pd Powders with High Density Hydrogen Isotopes (II) Discussions on Experimental Results and Underlying Physics

<u>A.Takahashi</u>^{1*}, A. Kitamura², Y. Sasaki², Y. Miyoshi², T. Nohmi², A. Taniike², R. Seto¹, and Y. Fujita¹ ¹Technova Inc. *akito@sutv.zaq.ne.jp ²(Division of Marine Engineering, Graduate School of Maritime Sciences, Kobe University)

> to be presented at ICCF15 October 5-9, 2009, Rome Italy

Aim

The Gas-Phase D(H)-Loading Method [1] with Nano-Fabricated Metal Powders is regarded promising for repeatable CMNS experiments.

We have constructed an experimental system to replicate the phenomenon of excess-heat (and ⁴He generation) and **investigate the underlying physics for D(H)-charged Pd powders**.

[1] Y. Arata, et al.; The special report on research project for creation of new energy, J. High Temperature Society, No. 1. 2008. Outline of the Present Work

We constructed two identical chambers (**twin system**); one for D_2 gas foreground run and the other for H_2 gas background run. Each system has an inner reaction chamber containing Pd powders (100nm Pd, Pd-black and nano-Pd/ZrO₂).

A water-cooling system is provided for flow calorimetry to estimate heat production rates for two phases.

D(H)/Pd ratios were measured for the 1st phase ("zero pressure interval"), for changing conditions (powder, gas-flow rate, base-cell temperature, etc.).

A REM counter was used for monitoring neutron emission. A NaI scintillator was used for monitoring gamma-ray. Furthermore, ⁴He analysis will be performed in the future.

Fig. 1(a): A. Kitamura et al., Physics Letters A, 373 (2009) 3109-3112.

Fig. 1(b): A. Kitamura et al., Physics Letters A, 373 (2009) 3109-3112.

New A: Stability of Flow Calorimeter with Zero Input Power Standard deviation = 14 mW

2. Experimental Procedure

Pd powders ($\phi 0.1 \mu m$, 99.5%) – results

The evolution is divided into 2 phases by the time 30 minutes after the beginning of the pressure rise.

The release of heat of hydride formation should be completed in the 1st phase.

B. Pd black (300 mesh, 99.9%) – comparison of Heat balance

- The output energies in the 1st phase are almost the same for both cases, but seem to be somewhat larger than the nominal values of 100 405 J/g (H₂) and 80 330 J/g (D₂)
- On the contrary, the output energy in the 2nd phase appears to be larger for D_2 than H_2 .

Experiments with Pd/PdO/ZrO₂ Dispersed Samples 10g (Net Pd weight : **3 g**): Three trials for Santoku 1, Santoku 2 and Santoku 3 samples, #1 and #2 runs for each sample

- Nano-Pd/ZrO₂ sample was produced by Santoku Co. Japan, based on different protocol from Inoue-Yamaura (Arata-Zhang).
- X-ray diffraction analysis showed composite of Pd/PdO/ZrO2.
- Pd particle size is 10nm in averaged diameter.
- A1 system: 10g for D-gas charging (2-3sccm)
- A2 system: 10g for H-gas charging (2-4sccm)
- Water-flow calorimetry: 6cc/min flow rate

Definition of Phase-I and Phase-II

D-PZ1#1 and H-PZ2#1; Results of Heat Evolution

No increase of neutron count rate by REM counter was seen, gamma-ray either.

Comparison of heat-power evolutions for 100nm Pd, Pd-black and 10nmPd/PdO/ZrO₂ samples: **Blue by D-charge cf. Red by H-charge**

D-PZ9#1 vs. H-PZ10#1 :-100~300min

Flow Rates: 6.42 (D), 20.5 (H) :sccm

E1st: 1.87eV/D, 2.53eV/H

Sample net Pd weight: 4.2g (Pd particle size : about 8 nm)

Summary table of integrated data for phase-1 and phase-2

Run #	weight of Pd [g]	Flow rate [sccm]	Output energy [kJ]		Specific output energy [kJ/g]		D/Pd or H/Pd	Elst [eV/D(H)]
			1st phase	2nd phase	1st phase	2nd phase	(1st ph.)	
D-PP1#1	5.0	2.7	0.5±0.4	2.5±4.1	0.10±0.07	0.52±0.83	0.43	0.26±0.14
D-PP1#2	5.0	3.8	0.5±0.2	4.0±4.4	0.10±0.05	0.79±0.88	0.44	0.25±0.09
H-PP2#1	5.0	5.4	0.4±0.2	2.6±3.9	0.08±0.03	0.53±0.80	0.44	0.20±0.07
D-PB1#1	3.2	3.6	1.7±0.3	8.3±4.5	0.54±0.10	2.60±1.40	0.88	0.67±0.12
H-PB2#1	3.6	4.2	1.6±0.3	(-2.2±4.6)	0.45±0.08	(-0.62±1.30)) 0.79	0.62±0.11
D-PB3#1	20.0	2.9	9.3±1.1	1.1±0.5	0.47±0.06	0.06±0.02	0.79	0.65±0.08
D-PB3#2	20.0	0.9	3.3±0.5	3.4±2.6	0.17±0.03	0.17±0.13	0.23	0.79±0.05
H-PB3#3	20.0	2.1	3.2±0.2	14±4.6	0.16±0.01	0.68±0.24	0.24	0.74±0.05
D-PZ1#1	3.0	1.8	7.0±0.2	6.8±1.3	2.33±0.05	2.27±0.43	1.08	2.4±0.05
H-PZ2#1	3.0	2.3	3.6±0.1	(-5.1±1.4)	1.20±0.02	(-1.70±0.47	7) 1.00	1.3±0.02
D-PZ3#1	3.0	1.9	6.4±0.2	6.2±1.4	2.13±0.05	2.07±0.47	1.08	2.2±0.05
H-PZ4#1	3.0	3.6	4.8±0.1	1.9±1.4	1.60±0.02	0.63±0.47	0.86	2.1±0.03
D-PZ5#1	3.0	2.0	7.1±0.2	1.3±1.4	2.38±0.03	0.42±0.45	1.04	2.5±0.03
H-PZ6#1	3.0	5.9	7.1±0.1	(-0.2±1.4)	2.36±0.02	(-0.08±0.48	3) 1.34	1.9±0.02
Average		(D)	6.9±0.4	4.8±3.0	2.3±0.1	1.6±1.0	1.1±0.0	2.4±0.2
for PZ		(H)	5.2±1.8	(-1.1±3.6)	1.7±0.6	(-0.4±1.2)	1.1±0.3	1.8±0.4

Discussions for the 1st Phase

- Pd 0.1 micron: (Heat/D)av = 0.25 (±0.1) eV (Heat/H)av = 0.20 (±0.1) eV
 Pd-black: (Heat/D)av = 0.70 (±0.15) eV (Heat/H)av = 0.69 (±0.1) eV
- Santoku1-3: (Pd/ZrO₂)

 $(\text{Heat/D})_{av} = 0.70 \ (\pm 0.15) \text{ e}$ $(\text{Heat/H})_{av} = 0.69 \ (\pm 0.1) \text{ eV}$ $(\text{Heat/D})_{av} = 2.4 \ (\pm 0.2) \text{ eV}$ $(\text{Heat/H})_{av} = 1.8 \ (\pm 0.4) \text{ eV}$

- After Fukai book: 0.2eV/H for bulk H absorption. 100kJ/mol-H₂ : 0.5eV/H for surface adsorption.
- Reaction may be Surface Mesoscopic Phenomenon for the 1st Phase ("zero pressure" interval). Isotopic effect is visible. Flow rate dep.
- Pd nano-particle makes deep trapping potential of D(H), probably in fractal defects of its surface!?
- This is the reason of high loading "in vacuum" for Pd-nano.

After evacuation, Santoku sample retains much more (100 times) D(H) than Pd-black: due to mesoscopic effect (rearrangement of surface and lattice) of Pd nano-particles.

4-3. Variation of pressure during sample baking for outgassing.

TEM Image of Pd/ZrO₂ Sample

(Courtesy of the Nuclear Science and Engineering Institute and Particulate Systems Research Center at the University of Missouri-Colombia; by R. Duncan)

TEM images of Palladium nanoparticles from Japan (sample # 2)

Metal-Oxide-Nano-Pd Composite

- PdDx
- X=1.0 by Arachi et al.;

D-Absorption in Osites of Pd-Lattice

(We support this data)

- X=2.0 by Yamaura et al; deuterons at Pd-ZrO₂ interface (Voids?)
- Arata claimed: x=2.5

Irregular and Fractal Sites should form on surface of nano-particle

Potential form of hydrogen adsorption and absorption near surface

B) Mesoscopic Pd Lattice A) Bulk Pd Lattice Surface Surface Non-Linear Collective **Trapping State** = Thermally Isolated Group State O-site E_{d} Ен~0.5eV Non-Linear Shrunken State **T-site** Ζ Ен~1.8eV O-site

(From Few Body System to Many Body System under Constraint (Self-Organization)

Conclusions-1

- Arata-Zhang's Excess Heat Result was replicated quantitatively.
- For Pd/PdO/ZrO₂ powder (Santoku):
 - 1) D-gas charge in the 1st phase (zero pressure) gave 20-90% excess heat than H-gas charge.
 - 2) In the 2nd phase, significant excess heat (about 3 kJ/g-Pd) for D-gas charge, while zero level for H-gas charge. (0.4 kJ/g-Li for lithium-ion battery)
- No increase of neutron counts was seen.
- D(H)/Pd ratio in the end of 1st phase was >1.0 (x=1.1 in average) Flow rate dependence.
- The Clumping-Together Effect can be depressed by the Pd/ZrO₂ dispersed sample.

Conclusions-2

- Nano-Pd dispersed sample (Santoku, Pd/ZrO₂) retained 100 times more D(H) atoms after evacuation, than the Pd-black case.
- Mesoscopic effect by Pd-nano-particle; deep well plus Bloch potential for collective state: probably makes deep D(H) trapping potentials (1.8-2.5eV).
- We need study for D(H)-gas flow-rate dependence and Pd-particle size dependence.
- Heat of Pd/ZrO₂ in Phase-I was about 10 times of bulk Pd. Peak power increases with flow rate increase.
- Replication by other groups is important.

Supplement Data-1

- Pb Black data
- Clumping-together Effect
- SEM Images

Pd-black (20g) / D-gas charge #1: Nov. 2008

Decreased absorption and heat level for #2

Pd-black (20g)/ D-gas #2

After Runs

Magnification: ×100 SEM Image

After experiments, Pd black powders stuck to be bigger sizes \rightarrow Decrease of active surface area

Before Runs

After Runs

Magnification: ×50,000 SEM Image

Before experiment, surface was fractal in nano-scale.

After experiment, surface became flatter in about 10 times larger scale \rightarrow Decrease of active surface area

Summary for Pd-black

- There were seen excess heat in the 1st and 2nd phases, but smaller than those by Pd/ZrO₂
- Pd-black powders stuck to be bigger sizes (about 10 times diameter by SEM observation), after the #1 run.
- This is the Clumping-Together-Effect of nanopowders.
- In the #2 run and following runs, no significant excess heat was seen.
- D/Pd ratio for #1 was 0.78 in the pressure zero condition under D-charge.
- D/Pd ratios for #2 and later runs, D/Pd was about 0.23 (much smaller).
- No transmuted elements were seen by PIXE.

Supplement Data 2

- Photographs of experimental systems
- Ao System
- A1 and A2 Twin system

1010000

= 11

Const. Temp. Water Bath Chiller Unit

Constant Flow Pump

2009

_Cold Trap

D₂ gas

H₂ gas

A1 System

Supplement Data 3

 Detail data for PZ-series runs (PZ=PdZrO₂ nano-composite powder)

- Reproducibility of Pase-1 and Phase-2 Data
- Comparison with Arata-Zhang Data

Results of Santoku2#1 run

D-gas Charging to Santoku2#1

H-gas Charging to Santoku2#1

Pd·ZrO₂ Santoku 2 #1 Run (A1) for D-gas Charge

Pd·ZrO2 Santoku 2 #1 Run (A2) for H-gas Charge

Arata-Zhang's 1st Phase Data for Pd/ZrO₂ (7g)

Results by Large H-Flow Rate And Low D-Gas Pressure

A1: H-gas, Flow Rate = 5.9 sccm A2: D-gas, Flow Rate = **2.0** sccm

Santoku 3#1 Run

D-PZ9#1 vs. H-PZ10#1 :-100~300min Flow Rates: 6.42 (D), 20.5 (H) sccm Sample net Pd weight: 4.2g

D-PZ9#1 vs. H-PZ10#1

Arata-Zhang Exp.: HTSJ, Vol.34, No.2 (2008)

Long time lasting heat by D-charge without input power: 29.2kJ Total by 24.4g Pd/ZrO₂ sample

Fig.5B "Skirt-Fusion" zone における各燃料にたいする Nuclear fusion の発生特性の比較(after 300min)

Santoku 1#1

For 1st phase: 7.0 kJ by D and 3.6kJ by H; 3.4KJ net excess heat For 2nd phase: 6.8kJ by D Total Excess Heat = $10.2kJ \rightarrow 3.4kJ/g-Pd$

Discussions on Total Excess Heat Rates for #1 Runs: Our results are comparable to Arata's.

- Arata-Zhang Exp.
- Sample Pd/ZrO₂ by Fukuda P. M. Co. weight: 24.4 g

net Pd weight: 7.7 g

- Observed Excess Heat (0-3000min): 29.2 kJ
- Excess Heat Rate: 3.79 (kJ/g-Pd) (Anomalous heat by H about 1 kJ/g inclusive) → Net Value ~ 2.8(kJ/g-Pd)

• Our Exp.

- Sample Pd/PdO/ZrO2 by Santoku Co.
 weight: 10 g
 net Pd weight: 4.3 g
- Observed Excess Heat (Example for S2, 0-3000min)

S2: (6.4-5.1)+7.0 = **8.3** ±1.2 kJ

- Excess Heat Rate:
- S1: 3.78 \pm 0.30 (kJ/g-Pd)
- **S2: 2.77** \pm 0.30

TEM Image of Used Pd/ZrO2 Sample taken by R. Duncan 2009

Image at 800 X magnification (scale size 2 µm)

Image at 50000 X magnification (scale size 20 nm)

TEM Image of Pd/ZrO₂ Sample

Supplement Data 4 Reuse of PZ Samples

- #2, #3 Runs
- "Heat after Death?"

Reuse of Sample: Long Time Lasting Excess Heat by Run: Santoku 2#2

run	Gas	Measured flow rate [sccm]	1st phase [kJ]	2nd phase [kJ]	1st phase [J/g]	2nd phase [J/g]	D/Pd or H/Pd
D ₂ -2-2	D	3.87	0.17 ± 0.03	9.89 ± 1.48	40 ± 7.0	2300 ± 345	0.47
H ₂ -2-2	Η	3.62	0.58 ± 0.05	1.68 ± 1.46	136±10.9	391±341	0.28

Run: Santoku 2#2: Expanded View of Early – Time Evolution

Run: Santoku 2**#2**: Expanded View of Heat Evolution after Evacuation- "Heat after Death"

Is Evacuation STIMULUS?

Theoretical View

- Tetrahedral Symmetric Condensate
- 4D Fusion and Products

 $4D/TSC \rightarrow {}^{4}He + {}^{4}He + 47.6MeV$

Result of Dynamic Condensation of 4D/TSC by Langevin Equation

After A. Takahashi, Trans. Fusion Technology 1994

.1: Typical decay channels of 4D fusion; E₁ transition may be induced with electromagnetic energy transfer via QED photons to lattice plasma oscillation. Major nuclear products are ⁴He with specified kinetic energies.

Fig.2: Illustration of extreme scenario of decay channel for 4D fusion; final nuclear products are 46 keV α-particles and most energy (47.7MeV) is transferred to lattice vibration via QED photons. Channels for CP Generation by 4D I. Symmetric Fragmentation 1) $4D \rightarrow {}^{8}Be^{*}(47.6MeV;0^{+},0) \rightarrow$ ${}^{4}He^{*}(Ex) + {}^{4}He^{*}(Ex) + 47.6MeV-2Ex$

• 1-1) Ex=0;

⁴He^{*}(gs;0⁺,0): 4D $\rightarrow\alpha$ + α +47.6MeV; E α =23.8MeV

1-2) Ex=20.21MeV (1st excited state of ⁴He);
 ⁴He*(20.21MeV;0⁺,0)→p(0.6-2.2MeV)+t(1.8-3.4MeV) + (Ex-19.815=0.4MeV) + (3.6MeV; moving ⁴He*)

; this **triton** makes secondary d+t reaction to emit 10-17MeV neutrons

2) $4D \rightarrow {}^{8}Be^{*} \rightarrow {}^{6}Li(E_{x})+d+(25.3MeV-E_{x})$

 Even parity states: Ex= 2.186MeV(3+,0), 3.563MeV(0+,1), 4.31MeV(2+,0), 5.31MeV(2+,1), 5.65MeV(1+,0), 15.8MeV(3+,0)

• 2-1) 4D→⁶Li(2.186)+d+23.11MeV

 $\label{eq:KE} \begin{array}{ll} \mbox{KE}=5.77 & \mbox{KE}=17.3 \\ \mbox{}^{6}\mbox{Li}(2.186\mbox{MeV})\mbox{:KE}=5.77\mbox{MeV}\mbox{:} \\ \mbox{} \rightarrow \mbox{}^{4}\mbox{He}(3.6\mbox{-}4.1\mbox{MeV}) + \mbox{d}(1.6\mbox{-}2.4\mbox{MeV}) \end{array}$

CP Spectra by 4D/TSC; Predicted

- ⁴He: 0.046, 1.52, 3.6-4.1, 2.9-4.3, 2.6-4.5, 2.1-4.6, 1.9-4.7, 4.0-5.6, 5.75, 7.9, 9.95, 11.9, 12.8, 13.69, 23.8 (MeV)
- Triton: 1.8-3.4, 10.2-10.6 (MeV)
- Deuteron: 0.9, 1.6-2.4, 0.2-2.6, 1.9-3.6, 0.9-4.2, 1.1-4.4, 5.95, 8.0-11.1,15.9 (MeV)
- Proton: 0.6-2.2, 3.5-3.9 (MeV)
 Purple values are by odd spin-parity of ⁸Be*(Ex=47.6MeV)

Others are S-wave Transitions

System-B Experiment for Charged Particle Spectroscopy

Evolution of total counts in "1-12 MeV "range of SSD detector, 5mm from sample

Charged Particle Spectra by SSBD (200 micron depletion layer) for D-PZ1#3B

Charged Particle Spectra by SSD

ICCF15

