### **Bose-Einstein Condensation Nuclear Fusion: Theoretical Predictions and Experimental Tests**

Yeong E. Kim Purdue Nuclear and Many-Body Theory Group Department of Physics, Purdue University West Lafayette, IN 47907

Presented at The 15<sup>th</sup> International Conference on Condensed Matter Nuclear Science (ICCF-15), Rome, Italy, October 5 – 9, 2009

References: Y. E. Kim, Naturwissenschaften (2009) 96: 803-811 (published online14 May 2009) and references therein

### **Experimental Observations**

- (D+D) fusion in free space (E  $\ge$  10 keV): {1} D+D  $\rightarrow$  p+T+4.03 MeV {2} D+D  $\rightarrow$  n+<sup>3</sup>He+3.27 MeV {3} D+D  $\rightarrow$  <sup>4</sup>He+ $\gamma$ +23.8 MeV R{1} $\approx$ R{2} and R{3}/R{1} $\approx$ 10<sup>-6</sup>
- (D+D) fusion in metal (E ≤ 0.1 eV) (m represents a host metal lattice or metal particle) :
- {4}  $D(m) + D(m) \rightarrow p(m) + T(m) + 4.03 \text{ MeV}(m)$
- {5}  $D(m) + D(m) \rightarrow n(m) + {}^{3}He(m) + 3.27 MeV(m)$
- {6}  $D(m) + D(m) \rightarrow {}^{4}He(m) + 23.8 \text{ MeV}(m)$

Fusion rate  $R{6}$  for  $\{6\}$  is much greater than rates  $R{4}$  and  $R{5}$ 

### (D+D) fusion in metal (E< 0.1 eV) (m represents a host metal lattice or metal particle) :

- {4}  $D(m) + D(m) \rightarrow p(m) + T(m) + 4.03 \text{ MeV}(m)$
- {5}  $D(m) + D(m) \rightarrow n(m) + {}^{3}He(m) + 3.27 MeV(m)$
- {6}  $D(m) + D(m) \rightarrow {}^{4}He(m) + 23.8 \text{ MeV}$

**Experimental Observations (as of 2008) (not complete)** 

From both electrolysis and gas loading experiments

- [1] The Coulomb barrier between two deuterons are suppressed
- [2] Excess heat production (the amount of exess heat indicates its nuclear origin)
- [3] <sup>4</sup>He production comensurate with excess heat production, no 23.8 MeV gamma ray
- [4] Production of hot spots and micro-scale crators on metal surface
- [5] Detection of radiations
- [6] Production of nuclear ashes with anomalous rates:  $R{4} \ll R{6}$  and  $R{5} \ll R{6}$
- [7] "Heat-after-death"
- [8] Requirement of deuteron mobility (D/Pd > 0.9, electric current, pressure gradient, etc.)
- [9] Requirement of deuterium purity (H/D << 1)
- [10] More tritium is produced than neutron R(T) >> R(n)

Based on a single physical concept, can we come up with a consistent physical theory which could explain all of the ten experimental observations ?

**Deuterons become mobile in metal when electric** current (Coehn 1929), and/or pressure gradient is applied !

→Explore a concept of "nuclear" Bose-Einstein Condensation of deuterons in metal for developing a consistent physical theory to explain the experimental observations, [1] through [10].



Requirement for Bose-Einstein Condensation (BEC):

 $\lambda_{DB}\!>d$ 

where d is the average distance between neighboring two Bosons Bose-Einstein Condensation in a gas: a new form of matter at the coldest temperatures in the universe...

### Predicted 1924... ...Created 1995





A. Einstein

S. Bose

Created in 1995 by C. Wieman, E. Cornell, W. Ketterle, et al. → Nobel Prize in 2000



Atomic BEC vs. Nuclear BEC BEC Requirement:  $\lambda_{DB} > d$ ,  $\lambda_{DB} = \frac{h}{mv}$  or  $v_{kT} < v_c$ Atomic BEC:  $d \approx 7 \times 10^3 \text{ Å} = 0.7 \mu \text{m}$  (for  $n_{Rb} = 2.6 \times 10^{12}/\text{cm}^3$ )  $v_c \approx 0.6 \text{ cm/sec}$  ( $v_{kT} \approx 0.58 \text{ cm/sec}$ , at  $T \approx 170 \text{ n}$  Kelvin) (~2000 atoms in BEC out of ~ 2 x 10<sup>4</sup> atoms  $\rightarrow$  10 % in BEC) (1) Increase  $\lambda_{DB}$  by slowing down neutral atoms using laser cooling and evaporation cooling

Nuclear BEC:  $d \approx 2.5$  Å (for  $n_D = 6.8 \times 10^{22}/\text{cm}^3$  in metal)  $v_c \approx 0.78 \times 10^5$  cm/sec ( $v_{kT} \approx 1.6 \times 10^5$  cm/sec at T= 300 Kelvin) (1) Increase  $\lambda_{DB}$  by slowing down charged deuterons using electromagnetic fields, pressure gradient, and/or cooling (2) Decrease d by compression using ultrahigh pressure device such as Diamond Anvil Cell (DAC) 7

### Fraction F of Deuterons in the BEC State in Metal at Various Temperatures

At 300°K with  $E_c = 0.00655$  eV corresponding to  $\lambda_{dB} = d = 2.5$  A, F (E<sub>c</sub>) = ~0.084 (8.4% !), (~10% for the atomic BEC case)

Since mobile deuterons in metal are localized within several metal lattice sites, 8.4 % of mobile deuterons with  $\upsilon \le \upsilon_c$ 

(satisfying  $\lambda_{DB} > d$ ) may not encounter each other frequently enough to form the BEC.

→Need to increase 0.084 (8.4%) to 0.28 (2/7 or 28%) (which is based on a geometrical argument), or

 $\rightarrow$ Collect 8.4% into localized regions by applied EM fields.

At 77.3°K (liquid nitrogen), F(E<sub>c</sub>) = ~0.44 (44%)

using Bose-Einstein distribution

At 20.3°K (liquid hydrogen)  $F(E_c) = \sim 0.94$  (94%) using Maxwell-Boltzmann distribution.

**BEC Mechanism** 

(1)

# Boson-Einstein Condensation (BEC) Mechanism N-Body Schroedinger Equation for the BEC State

For simplicity, we assume an isotropic harmonic potential for the deuteron trap.

*N*-body Schroedinger equation for the system is  $H\Psi = E\Psi$ 

where Hamiltonian is given by

$$H = \frac{\hbar^2}{2m} \sum_{i=1}^{N} \Delta_i + \frac{1}{2} m\omega^2 \sum_{i=1}^{N} r_i^2 + \sum_{i < j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|}$$
(2)

where *m* is the rest mass of the nucleus. In presence of electrons, we use the shielded Coulomb potential (Debye screening)

### **Total Reaction Rate**

The total fusion rate R<sub>t</sub> is given by

$$R_{t} = N_{trap} R_{trap} = \frac{N_{D}}{N} R_{trap} = \frac{1}{4} \left(\frac{3}{\pi}\right)^{1/2} A\Omega V n_{D}^{2}$$
(19)  
$$R_{trap} = \frac{1}{2} \left(\frac{3}{\pi}\right)^{3/2} A\Omega \frac{N^{2}}{D_{trap}^{3}} = \frac{1}{4} \left(\frac{3}{\pi}\right)^{1/2} A\Omega n_{D} N$$

where  $A = 2S\hbar / (\pi me^2)$  with S = 55 keV-barn,  $D_{trap}$  is the average diameter of the trap,  $D_{trap} = 2 < r >$ ,  $N_D$  is the total number of deuterons, N is the number of deuterons in a trap, and  $n_D$  is the deuteron density.

Only one unknown parameter is the probability of the BEC ground-state occupation,  $\Omega$ .

→ Observation [1] The Coulomb barrier between two deuterons are suppressed.

• For a single trap (or metal particle) containing N deuterons, we have for primary reactions:  $\psi_{BEC} \left\{ (N-2)D's + (D+D) \right\} \rightarrow \psi^* \left\{ {}^{4}He + (N-2)D's \right\} \quad (Q = 23.84 \text{ MeV})$ 

$$\psi_{\text{BEC}} \{ \text{ND's} \} \rightarrow \psi^* \{ (\text{N/2}) \text{ He} \} \quad ( \psi \in \text{N2} ) 23.84 \text{ MeV} \}$$

leading to micro-scale explosions or "melt-down" where  $\psi_{BEC}$  is the Bose-Einstein condensate ground-state (a coherent quantum state) with N deuterons, and  $\psi^*$  are continuum final states.

•Excess energy (Q value) is absorbed by the BEC state and shared by reaction products in the final state.

→ Observation [2] Excess heat production and [3] <sup>4</sup>He production, without 23.8MeV gamma rays.

• 3D fusion (D + D + D) and 4 D fusion are possible, but their fusion rates are expected to be much smaller than that of the 2D fusion, leading to secondary effects.

11

 $\psi_{\text{BEC}} \left\{ \text{ND's} \right\} \rightarrow \psi^* \left\{ (\text{N}/2)^4 \text{He} \right\} \quad \left( Q = (\text{N}/2) 23.84 \text{ MeV} \right)$ 

- Conversion of nearly all deuterons to <sup>4</sup>He by BECNF in metal grains and particles in the host metal
  - $\rightarrow$  Sustained BECNF and heat production
  - → Episodes of "Melt Down" reported by Fleischmann and others
  - Excess energies (Q) leading to a micro/nanoscale explosion creating a crater/cavity and a hot spot with firework-like tracks.
    - Size of a crater/cavity will depend on number of (D + D) fusions occuring simultaneously in BEC states.
  - → Observation [4] Production of hot spots and micro-craters.
    <sup>12</sup>

$$\psi_{\text{BEC}}\left\{ \left(N-2\right)D's + \left(D+D\right)\right\} \rightarrow \psi^*\left\{{}^4\text{He} + \left(N-2\right)D's\right\} \quad \left(Q = 23.84 \text{ MeV}\right)$$

leading to secondary reactions

**Total Momentum Conservation** 

- Initial Total Momentum:  $\vec{\mathbf{P}}_{\mathbf{D}^{N}} \approx \mathbf{0}$
- Final Total Momentum:

$$\{6\} \ \vec{\mathbf{P}}_{\mathbf{D}^{\mathbf{N}-2} \ ^{4}\mathbf{He}} \approx \mathbf{0}, \quad \left\langle \mathbf{T}_{\mathbf{D}} \right\rangle \approx \left\langle \mathbf{T}_{^{4}\mathbf{He}} \right\rangle \approx \ \frac{\mathbf{Q}\{6\}}{\mathbf{N}}$$

- <T> is the average kinetic energy.
- ~1 keV (up to 23.8 MeV) deuterons from {6} lose energies by electrons and induce X-rays, γ-rays, and Bremsstrahlung X-rays.

### → Observation [5] Detection of radiations.

# **Selection Rule for Two-Species Case** $\frac{Z_1}{m_1} = \frac{Z_2}{m_2}$

(m is mass number approximately given in units of the nucleon mass)

$$\frac{Z_1(D)}{m_1(D)} = \frac{1}{2}, \quad \left(\frac{Z_2(p)}{m_2(p)} = 1, \quad \frac{Z_2(T)}{m_2(T)} = \frac{1}{3}\right), \quad \left(\frac{Z_2(n)}{m_2(n)} = 0, \quad \frac{Z_2({}^{3}\text{He})}{m_2({}^{3}\text{He})} = \frac{2}{3}\right)$$

•Reactions {4} and {5} are forbidden/suppressed  $\rightarrow$  reaction rates are small {4}  $D(m) + D(m) \rightarrow p(m) + T(m) + 4.03 \text{ MeV}(m)$ 

{5}  $D(m)+D(m) \rightarrow n(m) + {}^{3}He(m) + 3.27 \text{ MeV}(m)$ 

 $\frac{Z_1}{m_1}\frac{(D)}{(D)} = \frac{Z_2({}^{4}He)}{m_2({}^{4}He)} = \frac{1}{2}$ 

•Reaction {6} is allowed  $\rightarrow$  reaction rate is large {6} D(m)+D(m) $\rightarrow$ <sup>4</sup>He(m) + 23.8 MeV (m)

 $\rightarrow$  This explains Observation [6] R(4) << R(6) and R(5) << R(6).

### • Heat after Death (Observation [7])

Because of mobility of deuterons in Pd nanoparticle traps, a system of  $\sim 10^{22}$  deuterons contained in  $\sim 10^{18}$  Pd nanoparticle traps is a dynamical system (in 3 g of 5 nm Pd nanoparticles). BEC states are continuously attained in a small fraction of the  $\sim 10^{18}$  Pd particle traps and undergo BEC fusion processes, until the formation of the BEC state ceases.

# Deuteron Mobility Requirement (Observation [8]) D/Pd ≥ ~0.9 is required for sustaining deuteron mobility in Pd. Electric current or pressure gradient is required.

### • Deuterium Purity Requirement (Observation [9]) Because of violation of the two-species selection rule, presence of hydrogens in deuteriums will surpress the formation of the BEC states, thus diminishing the fusion rate due to the BEC mechanism.





•Consistent with [8] the requirement of deuteron mobility (D/Pd > 0.9, electric current, pressure gradient, etc.)

•Output power of 0.15 W corresponds to  $R_t \approx 1 \ge 10^9$  DD fusions/sec for D+D  $\rightarrow$  <sup>4</sup>He + 23.8 MeV

BEC Mechanism on Reactions {4} and {5} Selection Rule (Secondary Reactions)

•  $R{4} \ll R{6}$ ,  $R{5} \ll R{6}$ , due the selection rule

{4} 
$$D(m) + D(m) \rightarrow p(m) + {}^{3}He(m) + 4.03MeV(m)$$
  
{5}  $D(m) + D(m) \rightarrow n(m) + T(m) + 3.27MeV(m)$   
{6}  $D(m) + D(m) \rightarrow {}^{4}He(m) + 23.8MeV(m)$ 

where neutron, n(m), is at energies ~keV.

- ~keV neutron(m) from Reaction {5} can undergo further reactions, {12}, and/or {13} below:
- {12} n(m) + D(m) (in BEC State)  $\rightarrow T(m) + 6.26$  MeV(m)
- {13}  $n(m) + D \rightarrow T + \gamma + 6.26 \text{ MeV}$
- $\rightarrow$  Reactions {12} and {13} produce more tritiums than neutrons, R(T) > R(n).
- $\rightarrow$  R(T) > R(<sup>3</sup>He)
- →This explains Observation [10] more tritium is produced than neutron.

### **Experimental Tests of Predictions of BECNF theory**

- 1. Tests based on the average size of metal particles
- 2. Tests for reaction-rate increases by applied EM fields
- 3. Tests for resistivity change
- 4. Tests for scalability

### Basic Fundamental Tests of "Nuclear" Bose-Einstein Condensation of Deuterons in Metal

- 5. Ultrahigh pressure experimental tests
- 6. Low temperature experimental tests
- $\rightarrow$  These experimental tests are needed
- (1) to improve and/or refine the theory, and also
- (2) to achieve 100 % reproducibility for experimental results, and for possible practical applications.

### **Experimental Tests**

- **1. Tests based on the average size of metal nanoparticles**
- The total fusion rate is given by

$$\mathbf{R}_{t} = \mathbf{N}_{trap} \mathbf{R}_{trap} = \frac{\mathbf{N}_{D}}{\mathbf{N}} \mathbf{R}_{trap} = \frac{1}{4} \left(\frac{3}{\pi}\right)^{1/2} \mathbf{A} \Omega \mathbf{V} \mathbf{n}_{D}^{2}$$
(19)

where  $N_{trap}$  is the total number of traps,  $N_D$  is the total number of deuterons, N is the number of deuterons in a trap, and  $\Omega$  is the probability of the BEC state occupation.

For the case of  $\Omega$  proportional to the ratio of surface area/ volume of each particle:  $\Omega \propto N^{-1/3}$  or  $\Omega \propto D_{trap}^{-1}$ 

$$R_{t}(D_{trap}) \propto \frac{1}{D_{trap}} \qquad \frac{R_{t}(5nm)}{R_{t}(10nm)} \approx 2, \quad \frac{R_{t}(2nm)}{R_{t}(10nm)} \approx 5, \text{ etc.}$$

 $R_t$  (smaller Pd particles) >  $R_t$  (larger Pd particles)

• The above theoretical prediction [Kim, Naturwissenschaften 96 (2009) 803-811 (14 May 2009)] is experimentally confirmed by A. Kitamura et al./ Physics Letters A **373** (2009) 3109-3112 (4 July 2009)



### 2. Tests for reaction-rate increases by applied EM fields

Increase of reaction-rate is expected by increase of BEC deuteron fraction which can be accomplished by applied EM fileds (electric currents (AC or DC), external electric field, external magnetic field, etc.)

### 3. Tests for resistivity change

Measure resistivity change which is expected when BEC occurs.

### 4. Tests for scalability

$$R_{t} \propto N_{trap} R_{trap} \propto N_{trap} \text{ for the same } R_{trap}$$

$$\rightarrow \frac{R_{t} (30 \text{ g Pd particles})}{R_{t} (3 \text{ g Pd particles})} = 10, \text{ etc.}$$

 $\frac{Q(5)}{m} \approx \sim keV$ 

### 5. Proposed Basic Fundamental Tests of "Nuclear" BEC - I

• Ultrahigh pressure experimental tests



Schematics of the core of a diamond anvil cell. The diamond size is a few millimeters at most

- Apply electric current through the sample.
- Sudden change in the resistivity is expected when deuterons form a BEC state at some pressure.
- Emission of radiations and neutrons may be expected when BECNF occurs.
- Possibility of using laser beam to measure Raman scattering frequency shifts.

- 6. Proposed Basic Fundamental Tests of "Nuclear" BEC II
- Low temperature experiments
- Test of theoretical prediction  $R_t(T_{low}) > R_t(T_{high})$
- At liquid nitrogen temperature (77.3 Kelvin), the fraction F(E<sub>c</sub>) of mobile deuterons in metal satisfying λ<sub>DB</sub> > d ≈ 2.5 Å
   or E < E<sub>c</sub> = 0.00655 eV is F(E<sub>c</sub>) = ~ 0.44 (~44% !)

At liquid hydrogen temperature (20.3 Kelvin), F(E<sub>c</sub>) = ~ 0.94 (~94 % !), using Maxwell-Boltzmann distribution.

- Apply electric current through the sample.
- Change in the resistivity is expected when deuterons form a BEC state at some lower temperatures
- Emission of radiations and neutrons may be expected when BECNF occurs, as secondary effects.
- Shifts in Raman scattering frequencies are expected when BEC occurs

Other Potential Applications of the Concept of Bose-Einstein Condensation of Deuterons in Metal

- 1. Transmutation
- 2. Transient Acoustic Cavitation Fusion
- 3. High Temperature Superconductivity of metal/alloy hydrides/deuterides

### **Conclusions and Summary**

- **BECNF** Theory provides a consistent conventional theoretical description of the experimental observations, [1] through [10].
- Experimental tests of a set of six (6) key theoretical predictions are proposed including two basic fundamental experimental tests of the concept of "nuclear" Bose-Einstein condensation of deuterons in metal
- Experimental tests of the predictions of the BECNF theory are needed in order (1) to improve and/or refine the theory, and also
   (2) to achieve 100 % reproducibility for practical applications.
- If the theoretical predictions are all confirmed experimentally, the concept of Bose-Einstein condensation of deuterons in metal may become a new discovery.

### **Backup Slides**

### Example with 3g of 50 $\overset{\circ}{\mathbf{A}}$ Pd particles

- Total number of Pd atoms in 3g,  $N_{Pd} = 1.7 \times 10^{22}$  Pd atoms  $N_{Pd} = 3g \times (6.02 \times 10^{23})/106.4g \approx 1.7 \times 10^{22}$  Pd atoms For  $N_D \approx N_{Pd}$ ,  $N_D = 1.7 \times 10^{22}$  D atoms
- The number density of Pd,  $n_{Pd} \cong 6.8 \times 10^{22} cm^{-3} = n_D$

 $n_{Pd} = 12.03 \text{ g cm}^{-3} \times (6.02 \times 10^{23})/106..4 \text{ g} \approx 6.8 \times 10^{22} \text{ cm}^{-3}$ 

• One Pd particle of diameter ~50  $\stackrel{o}{\mathbf{A}}$  contains  $N = n_D \left(\frac{\pi}{6}\right) \left(50 \stackrel{o}{\mathbf{A}}\right)^{\circ} \approx 4450$  deuterons

- In 3g of Pd particles, the total number of Pd particle traps is  $\frac{N_D}{N} = \frac{N_{Pd}}{N} = \frac{1.7 \times 10^{22}}{4.45 \times 10^3} \approx 3.8 \times 10^{18}$ particle traps
- For comparison, ~ 2000 atoms are trapped for the atomic case.

### Theoretical derivations of BEC nuclear fusion rates are given in the following references:

#### **Approximate Solution of Many-Body Schroedinger Equation**

- 1. Y.E. Kim and A.L. Zubarev, "Equivalent Linear Two-Body Method for Many-Body Problems", J. Phys. B: At. Mol. Opt. Phys. **33**, 55 (2000).
- 2. Y.E. Kim and A.L. Zubarev, "Equivalent Linear Two-Body Method for Bose-Einstein Condensates in Time-Dependent Harmonic Traps", Physical Review **A66**, 05362 (2002).

### **Optical Theorem Formulation of Nuclear Reactions**

3. Y.E. Kim, Y.J. Kim, A.L. Zubarev, and J.-H. Yoon, "Optical Theorem Formulation of Low-Energy Nuclear Reactions", Physical Review **C55**, 801 (1997).

### **Nuclear Fusion Rates for Deuterons in the BEC State**

- 4. Y.E. Kim and A.L. Zubarev, "Nuclear Fusion for Bose Nuclei Confined in Ion Traps", Fusion Technology **37**, 151 (2000).
- 5. Y.E. Kim and A.L. Zubarev, "Ultra Low-Energy Nuclear Fusion of Bose Nuclei in Nano-Scale Ion Traps", Italian Physical Society Conference Proceedings, Vol. **70**, (May 2000), pp. 375-384.

### **Fusion Reaction Rates**

Our final theoretical formula for the nuclear fusion rate  $R_{trap}$  for a single trap containing N deuterons is given by

$$\mathbf{R}_{\text{trap}} = \mathbf{\Omega} \mathbf{B} \mathbf{N} \boldsymbol{\omega}^2$$
(18)  
$$\boldsymbol{\omega}^2 = \sqrt{\frac{3}{4\pi}} \, \boldsymbol{\alpha} \left(\frac{\hbar \mathbf{c}}{\mathbf{m}}\right) \frac{\mathbf{N}}{\langle \mathbf{r} \rangle^3}$$

where  $\langle r \rangle$  is the radius of trap/atomic cluster,  $\langle r \rangle = \langle \Psi | r | \Psi \rangle$ ,

- B is given by  $B=3Am/(8\pi\alpha\hbar c)$ ,
- N is the average number of Bose nuclei in a trap/cluster.
- A is given by  $A=2Sr_B/(\pi\hbar)$ , where  $r_B=\hbar^2/(2\mu e^2)$ ,  $\mu=m/2$ ,
- S is the S-factor for the nuclear fusion reaction between two deuterons (for D(D,p)T and D(d,n)<sup>3</sup>He reactions, S  $\approx$  55 keV-barn)

## All constants are known except $\Omega$ , which is the probability of the BEC ground state occupation

#### **Equivalent Linear Two-Body (ELTB) Method**

(Kim and Zubarev, Physical Review A 66, 053602 (2002))

For the ground-state wave function  $\Psi$ , we use the following approximation  $\Psi(\vec{r}, \dots, \vec{r}_N) \approx \Psi(\rho) = \frac{\Phi(\rho)}{(\rho)}$ 

$$\Psi(\vec{r},...\vec{r}_N) \approx \Psi(\rho) = \frac{\Phi(\rho)}{\rho^{(3N-1)/2}}$$
(3)

where  $\rho = \left[\sum_{i=1}^{N} r_i^2\right]^{1/2}$ 

It has been shown that approximation (3) yields good results for the case of large N (Kim and Zubarev, J. Phys. B: At. Mol. Opt. Phys. **33**, 55 (2000))

By requiring that  $\Psi$  must satisfy a variational principle  $\delta \int \Psi^* H \Psi d\tau = 0$  with a subsidiary condition  $\int \Psi^* \Psi d\tau = 1$ , we obtain the following Schrödinger equation for the ground state wave function  $\Phi(\rho)$ 

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \frac{d^2}{d\rho^2} + \frac{m}{2} \omega^2 \rho^2 + \frac{\hbar^2}{2m} \frac{(3N-1)(3N-3)}{4\rho^2} + V(\rho) \end{bmatrix} \Phi = E\Phi \qquad (4)$$
  
where  $V(\rho) = \frac{2N\Gamma(3N/2)}{3\sqrt{2\pi}\Gamma(3N/2-3/2)\rho}$ (5)

#### **Optical Theorem Formulation of Nuclear Fusion Reactions** (Kim, et al. Physical Review C 55, 801 (1997))

In order to parameterize the short-range nuclear force, we use the optical theorem formulation of nuclear fusion reactions. The total elastic nucleus-nucleus amplitude can be written as  $f(Q) = f^{c}(Q) + \tilde{f}(Q) + \tilde{f}(Q) \quad (6)$ 

$$f(\theta) = f^{c}(\theta) + \tilde{f}(\theta)$$
(6)

where  $f^{c}(\theta)$  is the Coulomb amplitude, and  $\tilde{f}(\theta)$  can be expanded in partial waves

$$\tilde{f}(\theta) = \sum_{l} (2l+1)e^{2i\delta_{l}^{c}} f_{l}^{n(el)} P_{l}(\cos\theta)$$
(7)

In Eq. (7),  $\delta_i^c$  is the Coulomb phase shift,  $f_i^{n(el)} = (S_i^n - 1)/2ik$ , and  $s_i^n$  is the *l*-th partial wave S-matrix for the nuclear part. For low energy, we can write (optical theorem)

$$\operatorname{Im} f_{\iota}^{n(el)} \approx \frac{k}{4\pi} \sigma_{\iota}^{r} \tag{8}$$

where  $\sigma_i^r$  is the partial wave reaction cross section. In terms of the partial wave t-matrix, the elastic scattering amplitude,  $f_i^{n(el)}$  can be written as  $f_i^{n(el)} = \frac{2\mu}{c_i m_i^c_i |t_i| m_i^c}$ 

$$f_{i}^{n(el)} = -\frac{2\mu}{\hbar^{2}k^{2}} < \psi_{i}^{c} |t_{i}| \psi_{i}^{c} >$$
(9)

where  $\psi_{1}^{c}$  is the Coulomb wave function.

#### **Parameterization of the Short-Range Nuclear Force**

For the dominant contribution of only s-wave, we have

$$\operatorname{Im} f_0^{n(el)} \approx \frac{k}{4\pi} \sigma^r \tag{10}$$

$$f_{0}^{n(el)} = -\frac{2\mu}{\hbar^{2}k^{2}} \left\langle \psi_{0}^{c} \left| t_{0} \right| \psi_{0}^{c} \right\rangle$$
(11)

and

Where  $\sigma^r$  is conventionally parameterized as

$$\sigma^r = \frac{S}{E} e^{-2\pi\eta} \tag{12}$$

 $\eta = \frac{1}{2kr_B}, r_B = \frac{\hbar^2}{2\mu e^2}, \mu = m/2 \quad , e^{-2\pi\eta} \quad \text{is the "Gamow" factor,}$ 

and *S* is the *S*- factor for the nuclear fusion reaction between two nuclei. From the above relations, Eqs. (10), (11), and (12), we have

$$\frac{k}{4\pi}\sigma^{r} = -\frac{2\mu}{\hbar^{2}k^{2}} < \psi_{0}^{c} \left| \operatorname{Im} t_{0} \right| \psi_{0}^{c} >$$
(13)

For the case of N Bose nuclei, to account for a short range nuclear force between two nuclei, we introduce the following Fermi pseudo-potential  $V^F(\vec{r})$ 

$$\operatorname{Im} t_0 = \operatorname{Im} V^F(\vec{r}) = -\frac{A\hbar}{2}\delta(\vec{r})$$
(14)

where the short-range nuclear-force constant A is determined from Eqs. (12) and (13) to be  $A = 2Sr_B / \pi\hbar$ .

For deuteron-deuteron (DD) fusion via reactions D(d,p)T and  $D(d,n)^{3}He$ , the *S*-factor is S = 110 KeV-barn.

(10)

#### **Derivation of Fusion Probability and Rates**

For N identical Bose nuclei confined in an ion trap, the nucleus-nucleus fusion rate is determined from the trapped ground state wave function  $\psi$  as

$$R_{t} = -\frac{2}{\hbar} \frac{\sum_{i < j} < \psi \left| \operatorname{Im} t_{ij} \right| \psi >}{< \psi | \psi >}$$
(15)

where  $\operatorname{Im} t_{ij}$  is given by the Fermi potential Eq. (14),  $\operatorname{Im} t_{ij} = -A\hbar \delta(\vec{r})/2$ .

From Eq. (15), we obtain for a single trap

$$R_{t} = \sqrt{\frac{3}{4\pi}} \Omega B \alpha \left(\frac{\hbar c}{m}\right) N n_{B}$$
(16)

where  $\Omega$  is the probability of the ground state occupation,  $\alpha = e^2 / \hbar c$ ,  $n_B = N / \langle r \rangle^3$  is Bose nuclei density in a trap, and  $B = 3Am/8\pi c$  with  $A = 2Sr_B / \pi \hbar$ 

For the case of multiple ion traps (atomic clusters or bubbles), the total ion-trap nuclear fusion rate R per unit time and per unit volume, can be written as

$$R = n_t \sqrt{\frac{3}{4\pi}} \Omega B \alpha \left(\frac{\hbar c}{m}\right) N n_B \tag{17}$$

33

where  $n_t$  is a trap number density (number of traps per unit volume) and N is the average number of Bose nuclei in a trap.

#### **Selection Rule for Two Species Case**

### Mean-Field Theory of A Quantum Many-Particle System

(Hartree-Fock Theory)

- We consider a mixture of two different species of positively charged bosons, with N<sub>1</sub> and N<sub>2</sub> particles, charges  $Z_1 \ge 0$  and  $Z_2 \ge 0$ , and rest masses  $m_1$  and  $m_2$ , respectively. We assume  $V_i(\vec{r}) = m_i \omega_i^2 r^2 / 2$ .
- The mean-field energy functional for the two-component system is given by generalization of the one-component case

where

here  

$$E = \sum_{i=1}^{\infty} E_i + E_{int}, \qquad (20)$$

$$E_i = \int d\vec{r} \frac{\hbar^2}{2m_i} |\nabla \psi_i|^2,$$

$$E_{int} = \frac{e^2}{2} \int d\vec{x} d\vec{y} \frac{(Z_1 n_1(\vec{x}) + Z_2 n_2(\vec{x}))(Z_1 n_1(\vec{y}) + Z_2 n_2(\vec{y}))}{|\vec{x} - \vec{y}|}$$

$$n_i = |\psi_i|^2, \text{ is density of specie i, and } \int d\vec{r} n_i(\vec{r}) = N_i. \qquad (21)$$

### The minimization of the energy functional, Eq. (20), with subsidiary conditions, Eq. (21), leads to the following time-independent mean-field equations. $-\frac{\hbar^2}{2m_i}\nabla^2\psi_i(\vec{r}) + (V_i + W_i)\psi_i(\vec{r}) = \mu_i\psi_i(\vec{r}),$ (22)

where

$$W_{i}(\vec{r}) = e^{2} \int d\vec{y} \Big[ Z_{i}^{2} n_{i}^{2}(\vec{y}) + Z_{1} Z_{2} n_{1}(\vec{y}) n_{2}(\vec{y}) \Big] / \Big( |\vec{r} - \vec{y}| n_{i}(\vec{y}) \Big),$$
(23)

and  $\mu_i$  are the chemical potentials,  $\mu_i = \frac{\partial E}{\partial N_i}$ . (general thermodynamics identity).

In the Thomas-Fermi (TF) approximation (neglects the kinetic energy terms in Eq. (22)), Eq. (22) reduce to

$$\mu_i = V_i + W_i \tag{24}$$

which leads to the selection rule (derivation in a backup slide),  $\frac{Z_1}{m_1} = \frac{Z_2}{m_2}$  35

### **Selection Rule**

For the BEC mechanism for LENR, we obtain nuclear charge-mass selection rule (approximate).

Nuclear mass-charge selection rule: 
$$\mu_i = V_i + W_i$$

We can obtain from Eq. (24)

that

$$\mu_2 - \frac{Z_2}{Z_1} \mu_1 = \left(\frac{m_2 \omega_2^2}{m_1 \omega_1^2} - \frac{Z_2}{Z_1}\right) \frac{m_1 \omega_1^2}{2} r^2.$$

Since  $\mu_i$  are independent of r, we have proved that Eq. (23) has non-trivial solution if and only if

$$\left(\frac{m_2\omega_2^2}{m_1\omega_1^2} - \frac{Z_2}{Z_1}\right) = 0, \quad \text{or} \qquad \lambda = \frac{m_2\omega_2^2 Z_1}{m_1\omega_1^2 Z_2} = 1.$$
(25)

If we assume  $\omega_1 = \omega_2$ ,  $E_1(G.S.) = \frac{3\hbar\omega_1}{2} = E_2(G.S.) = \frac{3\hbar\omega_2}{2}$ ,

and we have from Eq. (25),  $\lambda{=}m_2Z_1{/}m_1Z_2{=}1$  or

$$\frac{Z_1}{m_1} = \frac{Z_2}{m_2}$$
(26)

# Fraction of Deuterons in the BEC State in Metal at Room Temperature

For Bose-Einstein distribution, the distribution function is given by

$$\mathbf{n}_{\mathbf{B}\mathbf{E}}(\mathbf{E}) = \frac{1}{\mathbf{e}^{\alpha}\mathbf{e}^{\mathbf{E}/\mathbf{k}\mathbf{T}} - 1}$$

where  $\mathbf{e}^{\alpha} \approx \left(2\pi \mathbf{mkT}\right)^{3/2} / \mathbf{n}_{\mathbf{D}}\mathbf{h}^{3}$  with the deuteron density,  $\mathbf{n}_{\mathbf{D}}$ . Using the density of (quantum) states N(E) given by

$$\mathbf{N}(\mathbf{E})\mathbf{d}\mathbf{E} = \frac{4\pi\mathbf{V}}{\mathbf{h}^3} (2\mathbf{m}^3)^{1/2} \sqrt{\mathbf{E}} \, \mathbf{d}\mathbf{E}$$

the total number of N can be calculated as

$$\mathbf{N} = \int_0^\infty \mathbf{n}_{\mathbf{B}\mathbf{E}}(\mathbf{E}) \mathbf{N}(\mathbf{E}) d\mathbf{E} = \int_0^\infty \frac{\mathbf{N}(\mathbf{E}) d\mathbf{E}}{\mathbf{e}^{\alpha} \mathbf{e}^{\mathbf{E}/\mathbf{k}\mathbf{T}} - 1}$$

A fraction  $F(E_c)$  of N deuterons below the critical energy  $E_c$  satisfying  $\lambda_{dB} = d(\lambda_{dB} \equiv h/mv)$  can be calculated as  $F(E_c) = \frac{1}{N} \int_0^{E_c} n_{BE}(E)N(E)dE$ 

For  $E_c$ = 0.00655 eV corresponding to  $\lambda_{dB} = d = 2.5 A$ , F ( $E_c$ ) = 0.084 (8.4% !), compared to ~10% for the atomic BEC case.

37