COLD FUSION, LENR, the Fleischmann-Pons Effect; ONE PERSPECTIVE on the STATE of the SCIENCE

> Michael C. H. McKubre Director, Energy Research Center, SRI International, Menlo Park, CA.

The 15th International Conference on Cold Fusion, ICCF15 *Roma, Italy* Monday, October 5, 2009.

Overview

- March 23rd 1989 Fleischmann and Pons reported results of: <u>an anomalous heat effect</u> resulting from the <u>extensive</u>, <u>electrochemical</u> insertion of <u>deuterium into palladium</u> cathodes occurring over an <u>extended period of time</u> by means of electrolysis of heavy water in alkaline electrolytes.
- This heat effect was at a level consistent with <u>Nuclear</u> but not <u>Chemical</u> energy or known lattice <u>Storage</u> effects, but occurred (*mostly*) without penetrating radiation (α, β, γ, n°) or activation (³H).
- Nuclear level heat effects have been observed in the D/Pd system with energies 100's or 1,000's times known chemical effects.
- We are concerned with answers to the following questions:
 - ➤ What do we think we know?
 - ➤ Why do we think we know it?
 - > Why do doubts still exist in the broader scientific community?
 - ➤ How do we propose to make progress?

Background

Critical activities at SRI:

- The measurement and importance of D/Pd loading
- > The role of chemical additives and poisons in loading and interfacial dynamics
- Design, construction and successful implementation of a novel, high-accuracy, fully-automated mass flow calorimeter
- Replication studies:
 - \diamond Fleischmann Pons (Excess Heat)
 - ♦ Miles and Bush (⁴He)
 - ♦ Case (Heat and ⁴He)
 - ♦ Arata and Zhang (Heat, ³H and ³He)
 - ♦ Energetics (High level excess power and energy)
- Encouragement and participation in a number of significant and longstanding research partnerships and collaborations:
 - Stanford University [Huggins, Crouch-Baker]
 - Texas A&M, Cyclotron Center [Wolf, Jevtic]
 - MIT [Hagelstein, Smullin, Chaudhary]
 - Osaka University [Arata, Zhang]
 - ENEA Frascati [Violante, Sarto, Castagna]
 - Energetics [Dardik, El Boher, Greenspan, Lesin, Zilov]
 - University of Rome [Bertolotti, Sibilia]
 - NRL [Hubler, Grabowsky, Knies, Melich, Nagel]

Object

- To define and develop an experiment-based understanding of new physical effects in metal deuterides with primary focus on:
 - ➢ High loading and flux.
 - > Lattice heat generation not consistent with known chemistry or storage effects.
 - ➤ The appearance of new elements or isotopes.
 - > The registration of energetic particles.
- Review methadology:
 - > What initial hypothesis was proposed?
 - What experimental methods were employed?
 - > What results were obtained?
 - ➢ How were these results interpreted?
 - > What is the consistency, laboratory-to-laboratory and sample-to-sample?
 - What new understanding was achieved from the analysis of results?
 - How does this knowledge fit in the framework of modern physics?
 - > What alternative explanations, or objections have been proposed?
 - How are objections countered or incorporated into an improved understanding?
- What is the status of research?
- What are the prospects and programme for the future?

Order

- Excess Heat from D/Pd
- The "Q" value: Excess Heat and ⁴He
- ✤ ³H and ³He
- Formation of higher mass isotopes
- Energetic particles and tracks

Excess Heat: Hypothesis 1

"An unexpected source of heat can be observed in the D/Pd System when Deuterium is loaded electrochemically into the Palladium Lattice... to a sufficient degree."

Experiments:

- ✤ D/Pd Loading.
 - Electrochemical Impedance (kinetics & mechanism)
 - Resistance Ratio R/R° (extent of loading)
- Calorimetry
 - ➢ first principles closed-cell, mass-flow calorimeter,
 - > > 98% heat recovery (99.3%)
 - \blacktriangleright absolute accuracy < ±0.4% (0.35%)

Loading Cell and Reactions.

Wires: 1-3 mm in dia. 3-5 cm in length. 1M LiOD Electrolyte

SRI Quartz Calorimeter *and* Degree of Loading (DoL) Cell

SRI Labyrinth (L and M) Calorimeter and Cell

<u>Accuracy</u>: ±0.35% <u>Operation</u>: 100 mW – 30W <u>Stability</u>: > 1000 hours

<u>P15</u> 1M LiOD + 200ppm Al, 3 cm x 3mm Pd Wire cathode.

Time of Electrolysis (Hours)

SRI *FPE* Replication

- a) Nuclear -level heat release (1000's of eV/Pd Atom).
- b) Current threshold and linear slope.
- c) Loading threshold and parabolic rise of P_{XS} .

M4: The Dynamics of D Flux

M4: Excess Power Fitting Function

Correlations observed in SRI results

Necessary conditions:

Maintain High <u>Average</u> D/Pd Ratio For times >> 20-50 times $\tau_{D/D}$ At electrolytic i >250-500mA cm⁻² With an imposed D Flux (Loading) (Initiation) (Activation) (Disequilibrium)

Heat correlated with:

- electrochemical current or current density
- \triangleright D/Pd bulk loading or V_{ref.} surface potential
- ➢ Pd metallurgy
- Laser stimulus

• For Pd wire cathodes Mode A heat production: $\mathbf{D} = \mathbf{N} \mathbf{I} (\mathbf{u} + \mathbf{v}^{\mathbf{0}})^2 (\mathbf{i} + \mathbf{v}^{\mathbf{0}})^2$

 $P_{xs} = M (x - x^{\circ})^2 (i - i^{\circ}) |i_D|$

x = D/Pd, $x^{\circ} \sim 0.875$, $i^{\circ} = 75-450 \text{mA cm}^{-2}$, $i_{D} = 2-20 \text{ mA cm}^{-2}$, $t^{\circ} > 20 \tau_{D/D}$

* 50 μ m foils follow a similar equation with lower current thresholds

Observations

- Effect Evidenced on numerous occasions (>70 at SRI)
- \clubsuit Up to 90 σ observation of excess power effect
- $P_{XS} > 1 kW/cm^3$ (transient)
- $P_{XS} \sim 150 \text{W/cm}^2 (1 \text{ month})$
- $P_{XS} / P_{Electrochem.} > 3$
- $E_{\rm XS} > 100 \, {\rm MJ}$
- ✤ 100 2,000 eV/ Pd Atom
- Positive Temperature Coefficient

Salient* Criticisms

* "The experiments/results are not reproducible":

- Some teams see no results (*football teams / nationality*)
- Different results in different laboratories
- > Inconsistent results in the same laboratory with similar samples

* "The results are inaccurate":

- Mis-measurement of input power
- Mis-measurement of output power
- \succ The delta (P_{XS}) is not outside the measurement uncertainty

* "The heat is real but is due to unknown or unaccounted chemical effects or lattice energy storage".

chemical effects or lattice energy storage":

- > Over-accounting for electrolysis products (V_{TN})
- Chemistry in the electrolyte volume
- > Energy storage and release (small $\% \int$ energy)
- Hydrinos or "new" chemistry [Black Light Power]

* "Missing nuclear products":

- Quantitative energetic products not seen ("ash")
- > Difficulty of measuring ⁴He in the presence of D_2 and ambient

* Salient |'sālyənt; -lēənt|adjective

1 most noticeable or important : it succinctly covered all the salient points of the case. • prominent;

2 Heraldry (of an animal) standing on its hind legs with the forepaws raised, as if leaping.

*"The experiments/results are not reproducible" ** Electrodes made from the same lot of materials (Pd) produce consistent levels of excess heat

♦ $P_{xs} = M (x-x^{\circ})^2 (i-i^{\circ}) |i_D|$, x°~ 0.875 D/Pd, <u>all</u> terms are important!

Electrodes capable of <u>attaining</u> and <u>maintaining</u> high loading – are capable of producing excess heat

SRI/ENEA DARPA-sponsored Energetics (SW) Replication

15 experiments performed using SRI DAQ,

11 (73%) produced excess heat above 3σ .								
	Cell -	Cathode	Min.	Max.	Excess	Power	Energy	
Calorime		eter	R/R°	D/Pd	$\%$ of P_{In}	(mW)	(kJ)	
1	9-7 E	Lot A	1.77	0.895	<5%			
2	11-8 E	L5(2)	1.67	0.915	60%	340	514	
3	12-9 E	Lot Á	1.84	0.877	<5%			
4	15-7 E	L5(1)	1.77	0.895	<5%			
5	16-8 E	L5(4)	1.86	0.871	<5%			
6	17-9 E	L1(1)	1.55	0.939	20%	460	407	
7	21-7 E	# 830	1.92	0.836	<5%			
8	22-8 E	L5(3)	1.8	0.888	30%	200	188	
9	35-7 <mark>S</mark>	L17(1)	1.32	0.985	12%	1800	553	
10	35-8 <mark>S</mark>	L17(2)	0.95	1.059	13%	2066	313	
11	35-9 <mark>S</mark>	L17	1.39	0.971	1%			
12	43-7 <mark>S</mark>	L14-2	1.73	0.903	80%	1250	245	
13	43-8 <mark>S</mark>	ETI	1.63	0.923	5%	525	65	
14	43-9 <mark>S</mark>	L14-3	1.61	0.927	1%			
15	51-7 <mark>S</mark>	L25B-1	1.55	0.939	12%	266	176	
16	51-8 <mark>S</mark>	L25A-2	1.52	0.945	5%	133	14	
17	51-9 <mark>S</mark>	L19	1.54	0.941	43%	79	28	
18	56-7 <mark>S</mark>	L24F	1.55	0.939	15%	2095	536	
19	56-8 <mark>S</mark>	L24D	1.84	0.877	4%			
20	56-9 <mark>S</mark>	L25B-2	1.56	0.937	3%			
21	57-8 S	Pd-C	N.A.	N.A.	300%	93	115	
22	58-9 S	L25A	1.69	0.911	200%	540	485	
23	61-7 <mark>S</mark>	L25B-1	1.63	0.923	50%	105	146	
E = Energetics and $S = SRI Data Acquisition.$								
6 experiments performed using ENEA DAQ, and								
Mass Flow Cal. produced significant P_{XS} .								
Data Ca		thode	Min.	Max.	Exc	ess Power		
Acquisition				R/R	° D/P	d % of	P _{In} Mode	
ENEA			L14	1.5	4 0.94	1 80	В	
ENEA			L17	1.	4 0.96	9 500) B	
ENEA			L19	1.	7 0.90	9 100) A	
ENEA			L23	1.6	9 0.91	1 37	В	
ENEA			L25A		X U XX	x 24	в	

L30

1.78

0.892

7000

В

ENEA

McKubre-Dardik-Violante, *et al*, Replication of Condensed Matter Heat Production, in *Low-Energy Nuclear Reactions Sourcebook*, Marwan, J., ACS Symposium Series 998, Oxford University Press, 2008, p. 219.

"The results are inaccurate"

* "Mis-measurement of input electrical power":

- Relatively simple measurement (I, V, R, t)
- Slightly more difficult for non-dc input (SW, pulses)
- Use `scopes and transient analyzers to quantify "hidden" inputs
- ➤ Calorimeter is the best measure and most experiments for most of the time register no thermal imbalance (calibrations, blanks).

* "Mis-measurement of thermal output power":

- ➤ Thermal balance...
- Different calorimetric methods (multiple) show consistent effects
- Mass flow calorimeter:
 - \diamond Simple device
 - \diamond First principles
 - \diamond Very little to calibrate
 - \diamond In SS operation the qualitative effect is unmistakable
- " $P_{XS} = P_{Out} P_{In}$ < measurement uncertainty":
 - Pre- post- and interim calibration
 - ≻ SRI <u>90 σ </u> observation (P15 slide 10)
 - > Hundreds of observations of $P_{XS} > 3 \sigma$
 - Effects persist for hours, days, weeks, (>1 month)
 - $P_{Out} / P_{In} > 2, 3, 5, 25!$

"The effect is due to chemistry or energy storage"

• Over-accounting for electrolysis products (V_{TN}) ":

- \succ The effect is seen in closed cells
- Accurate account is taken for electrolyte watering
- * "Chemistry in the electrolyte volume":
 - Effect 100 1000 times > sum of all possible chemical reactions*
 - Reactant concentrations are monitored
 - > Normalized to Pd (or D/Pd) we measure $10^2 10^4$ eV/atom
- "Energy storage (slow) and release (rapid)":
 - > P_{XS} measured for > 50% of some experiments
 - $> 10^2 10^4 \text{ eV/atom would be novel (and useful)}$
 - > E_{XS} / E_{In} > 25 measured in (at least) 1 experiment
- "Hydrinos or other "exotic" chemistry":
 - This effect not considered here

Energetics* Energy Gain [1]

Energetics Energy Gain [2] (P_{XS})

ET-TIC Off-line: ETE 4 64-18.05.2004-13.05

Energetics Energy Gain [3] (E_{XS})

"Where is the ash?"

* "The expected energetic radiation does not accompany the (putative) heat production":

 "The circumstances of hot fusion are not those of cold fusion" - J. Schwinger (1989).

* "The nuclear products claimed cannot account for the excess heat":

> ³H and ³He are produced in FPE experiments – under special circumstances – largely asynchronous with the excess energy

➤ Claims for "massive transmutation" at (or above) the levels needed to account for measured excess energy have yet to be verified

☆ "The claimed quantitative product (⁴He) is":

- a) Impossible to produce
 ≻This is an experimental question
 ≻Theoretical denial is unscientific
- b) Difficult to measure (D₂, ambient)
 ≻True but reliable measurements can (and have) been made with care
- c) Not found in sufficient quantity
 > Where people have looked carefully they have found quantitative or "semiquantitative" ⁴He [more work is needed]

"4*He*: Hypothesis 2"

"The quantitative <u>product</u> of the heat producing reaction is ⁴He that evolves <u>primarily</u> without associated energetic byproducts"

Experiments:

Simultaneous measurement of Excess Heat and gas
 phase ⁴He

- > All metal-sealed apparatus integral
- Self purging rate
- ✤ Retrospective measurement of metal phase ⁴He
 - ➤ "easy" to find
 - difficult to quantify

"⁴He – a little history"

Miles-Bush

- Self-sparging "open" cells (1990-1994)
- Statistical analysis of [Heat|Helium] (1 in 750,000 random chance)
- > $1.4 \pm .7 \times 10^{11}$ ⁴He s⁻¹ W⁻¹ (*c.f.* 2.5 × 10¹¹) 54% of "expected" value
- > Confirmed by Bush at SRI $1.5 \pm .2 \times 10^{11}$ 58% of "expected" value
- ➢ Rate (not integral) measurement, small [⁴He], sealing?

"The Italians":

- ➢ Gozzi et al − simultaneous measurements, time correlation
- ➢ De Ninno, del Guidice, Preparata "super"-quantitative ⁴He?
- ➢ Violante *et al* − confirmed SRI/Case − lattice retention

Arata and Zhang

- >³He and ⁴He in gas and solid phases*
- ➢³He (from ³H decay) confirmed at SRI
- New results from gas-loading studies?

SRI

- > Case Pd/C gas phase
- ➢ FPE electrolysis (M4)

* An additional 15 studies found unexpected ⁴He in metal cathodes after FPE energy production [Storms].

SRI Case Replication

- Correlated Heat and ⁴He a)
- $Q = 31 \pm 13 \text{ MeV/atom}$ b)
- Discrepancy due to solid c) phase retention of ⁴He.

To Mass

M4: Excess Power Fitting Function

SRI M4 Helium

➢ Mass balance of ⁴He is <u>quantitatively consistent</u> with $D + D → ⁴He + 24 \text{ MeV Heat}_{Lattice}$

 $> \sim 30 - 40\%$ of the ⁴He is bound loosely at or near the cathode surface

Preliminary answers

✤ Is the effect real?

- > The FPE is new effect in physics
- Requires a new mechanistic description and explanation
- Very likely associated with a significant number of CMN Effects
- Once explained the underlying effect will not seem "so strange"

What is the effect?

- Heat production consistent with nuclear but not chemical energy or known lattice storage effects
- ➤ Temporally and quantitatively accompanied by ⁴He
- A number of other nuclear products and processes (some of which may be of "more than scientific" interest)

How do we make progress?

- <u>Theory</u>: quantitative, predictive fundamental physics description
- Science: we <u>must</u> engage the broader scientific community
- Commerce: create, market and sell product(s) based on the effect
- Public/Politic: growing public concern/interest in "Alternative Energy" options

Acknowledgements

<u>Funding Support</u>: EPRI, MITI, DARPA, DTRA

The author is also very much indebted to a group of scientists and engineers which had as it's core: Yoshiaki Arata, Les Case, Jason Chao, Bindi Chexal, Brian Clarke, Steve Crouch-Baker, Jon McCarty, Irving Dardik, Arik El Boher, Ehud Greenspan, Peter Hagelstein, Alan Hauser, Graham Hubler, Nada Jevtic, Shaul Lesin, Robert Nowak, Tom Passell, Andrew Riley, Romeu Rocha-Filho Joe Santucci, Maria Schreiber, Stuart Smedley, Fran Tanzella, Paolo Tripodi, Robert Weaver, Vittorio Violante, Kevin Wolf, Sharon Wing and Tanya Zilov.