Review of experimental measurements involving dd reactions

> Michael C. H. McKubre Director of the Energy Research Center SRI International, Menlo Park, California.

Presented at the Short Course on LENR for ICCF-10 August 25, 2003 Case cell Studies: D₂ Gas with Pd/C Catalyst

Case Conclusions

Near quantitative correlation between Heat and ⁴He production according to: Predicted: $d + d \rightarrow {}^{4}He + \sim 24MeV_{(lattice)}$ Measured: $Q = 31 \pm 13$ MeV/atom Discrepancy may be due to solid phase retention of ⁴He Substantial initiation time >> D diffusion. $Max [^{4}He]_{Sample} / [^{4}He]_{Air} > 2$

Production of Tritium in a Sealed Pd cavity

AZ1 0.3M LiOD, AZ2 0.3M LiOH Cathodic Current 5 - 7.5A Current Density 170-255mA cm⁻² P_{in} 50-317 W, Duration <u>120</u> Days $P_{xs,Max} = 10 \pm 1.5\%$, P_{xs} 0 ±1.5%,

Deloaded: open circuit and at 2V Anodic for a further <u>100</u> Days.

AZ1: Radial Distribution of ³He and ³H

• Production of Tritium was between 2x10¹⁵ and 5x10¹⁵ atoms.

Modeled as a single event, this occurred during cathodic electrolysis.

There is definite evidence of excess ³He from Tritium decay of all samples of Pd & Pd-black from the D₂O experiment.

Samples of Pd taken from a similar and contemporaneous H₂O electrode show low ³He levels consistent with blank Pd.

Measurements of the ³He gradient through the 3.5mm wall of the D_2O electrode show that the ³He is the decay product of Tritium which diffused from a source inside the electrode.

No evidence for ⁴He quantitatively consistent with excess heat.