



3

RECOM Russian research Center "Kurchatov Institute", Russia

www.uf.narod.ru

As discussed in detail by **Recami&Mignani** [R. Mignani, E. Recami // Nuovo Cimento, 30A, #4, 533 (1975); Lett. Nuovo Cimento, 11, #8, 417 (1974). ], the existence of the **tachyon** (i.e. a superluminal particle) has no conflict with the theory of special relativity.

Within the framework of **classical electrodynamics**, **Recami** has shown that **superluminal electric charges** (tachyons) can be described similarly to **subliminal magnetically charged** particles.

Meanwhile, G. Lochak paid attention to the fact that the Tushek-Salam gauge invariance for the massless Dirac equation gives rise to an equation describing the magnetic monopoles [G. Lochak // Ann. Fond. L.de Broglie, 1983, #8, 345; Ann. Fond. L.de Broglie, 1984, #9, 5. ].

**RECOM** <u>www.UF.narod.ru</u>

#### The new equation which is proposed

- obeys the local Tushek-Salam gauge invariance with allowance for the <u>linear mass term</u>, that is, it represents a development of Lochak's magnetic monopole theory, and
- 2. describes the magnetic monopoles that coincide, in the classical approximation, with the **Recami tachyons**.



$$\begin{cases} \gamma_{\mu} \left( \partial_{\mu} - \frac{\mathbf{g}}{\hbar \mathbf{c}} \gamma_{5} \cdot \mathbf{B}_{\mu} \right) + \frac{\mathbf{mc}}{\hbar} \mathbf{\Gamma} \\ \rbrace \Psi = \mathbf{0}, \\ \overline{\Psi} \left\{ \gamma_{\mu} \left( -\overline{\partial}_{\mu} - \frac{\mathbf{g}}{\hbar \mathbf{c}} \gamma_{5} \cdot \mathbf{B}_{\mu} \right) + \overline{\Psi} \cdot \frac{\mathbf{mc}}{\hbar} \mathbf{\Gamma} \\ \rbrace = \mathbf{0}, \end{cases}$$

$$\begin{split} \gamma_5 \Gamma &= -\Gamma \gamma_5, \\ \Gamma &= a_k \gamma_k \cdot \gamma_5, \qquad a_k a_k = 1, \\ \Gamma^2 &= -a_k \gamma_k \cdot a_m \gamma_m = -1, \end{split}$$

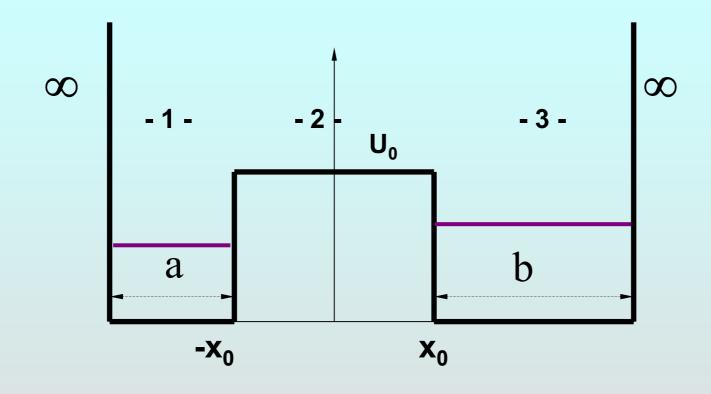


Each of the equations splits into two **independent** equations in the **Weyl** representation:

$$\begin{bmatrix} \frac{1}{c} \frac{\partial}{\partial t} - \vec{\sigma} \cdot \nabla - i \frac{g}{\hbar c} (\chi + \vec{\sigma} \vec{B}) - i \frac{mc}{\hbar} \end{bmatrix} \xi = 0$$
$$\begin{bmatrix} \frac{1}{c} \frac{\partial}{\partial t} + \vec{\sigma} \cdot \nabla + i \frac{g}{\hbar c} (\chi - \vec{\sigma} \vec{B}) + i \frac{mc}{\hbar} \end{bmatrix} \eta = 0$$

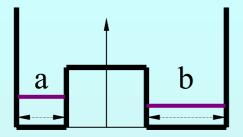


The fact that this equation really describes the tachyons becomes evident from the **dispersion characteristic** equation:


$$\left(\frac{\omega}{c} - \frac{mc}{\hbar}\right)^2 = \vec{k}^2$$

Dirac: 
$$\left(\frac{\omega}{c}\right)^2 = k_0^2 + \vec{k}^2$$




# The effect of quantum tunnel resonance **D.V. Filippov** 1 £(.] **RECOM** Russian research Center "Kurchatov Institute", Russia www.uf.narod.ru

#### The effect of quantum tunnel resonance



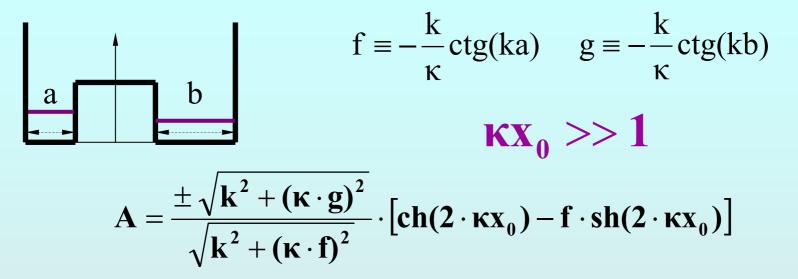


## The effect of quantum tunnel resonance



$$\mathbf{i}\hbar\frac{\partial}{\partial t}\widetilde{\psi}(\mathbf{t},\mathbf{x}) = \hat{\mathbf{H}}\widetilde{\psi} = \left[-\frac{\hbar^2}{2\mathbf{m}}\cdot\frac{\partial^2}{\partial \mathbf{x}^2} + \mathbf{U}(\mathbf{x})\right]\widetilde{\psi}$$

 $\widetilde{\psi}(t, \mathbf{x}) = \exp(-i\mathbf{E}t/\hbar) \cdot \psi(\mathbf{x})$ 


$$\psi_1 = \psi_0 \cdot \sin[\mathbf{k}(\mathbf{x} + \mathbf{x}_0 + \mathbf{a})]$$
  

$$\psi_2 = \psi_0 \cdot [\mathbf{B}_- \exp(-\kappa \mathbf{x}) - \mathbf{B}_+ \exp(\kappa \cdot \mathbf{x})]$$
  

$$\psi_3 = \mathbf{A} \cdot \psi_0 \cdot \sin[\mathbf{k}(\mathbf{x} - \mathbf{x}_0 - \mathbf{b})]$$



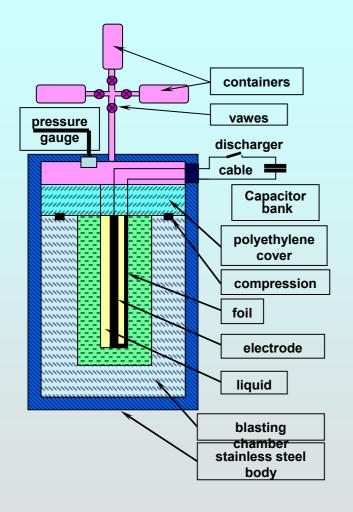
#### The effect of quantum tunnel resonance



In resonance case:  $ka=kb +\pi \cdot n$ , i.e. g=f. We received *exact* decision  $A=\pm 1$ , that is the particle equiprobably occupies both "holes". We shall notice, that the condition of a resonance depends only

on a ratio of "width" of left and right "hole" and

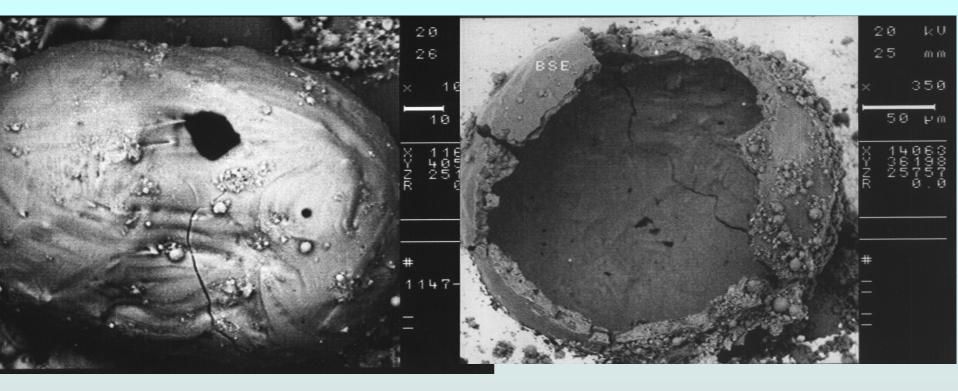
*does not depend on width and height of "barrier"* between them. The allowable width of a resonance depends on the sizes of "barrier".


## Study of the gas released upon electric explosion of titanium foils in liquids

Urutskoev L.I.<sup>1</sup>, Govorun A.P.<sup>1</sup>, Gulyaev A.A.<sup>1</sup>, Demkin S.A.<sup>2</sup>, Dorovskoi V.M.<sup>2</sup>, Elesin L.A.<sup>2</sup>, Kuznetsov V.L.<sup>2</sup>, Petrushko S.V.<sup>1</sup>, Steblevskii A.V.<sup>3</sup>, Stolyarov V.L.<sup>2</sup>, Fedotov V.G.<sup>4</sup>, Filippov D.V.<sup>1</sup>

RECOM Russian research Center "Kurchatov Institute", Russia
 Kurchatov Institute
 Institute of Inorganic Chemistry
 Institute of Chemical Physics

www.uf.narod.ru


#### Study of the gas released upon electric explosion of titanium foils in liquids



- 1. After an electric explosion of titanium foil in water, the sediment formed contains spherical hollow particles filled with  $H_2$ . In some particles, hydrogen pressure is so high that the particles are destroyed.
- 2. Noteworthy is the absence of  $O_2$  in hollow particles.
- 3. An inhomogeneous content of admixtures in Ti has been detected over different topological fragments of the sample.



#### Study of the gas released upon electric explosion of titanium foils in liquids



- 1. After an electric explosion of titanium foil in water, the sediment formed contains spherical hollow particles filled with  $H_2$ . In some particles, hydrogen pressure is so high that the particles are destroyed.
- 2. Noteworthy is the absence of  $O_2$  in hollow particles.
- 3. An inhomogeneous content of admixtures in Ti has been detected over different topological fragments of the sample.

#### **RECOM** <u>www.UF.narod.ru</u>