³He/⁴He Production Ratio by Tetrahedral Symmetric Condensation

> Akito Takahashi To be presented at ICCF11 Marseille, Nov.1-5, 2004

AIMS

- Some works report ³He generation, in addition to ⁴He: Arata-Zhang, McKubre et al., and so on
- (1)Based on EQPET model to treat 4-body resonance fusion of mixed H/D state under tetrahedral symmetric condensation (TSC), calculation is made to estimate variation of ³He/⁴He production ratio as a function of H/D mixing rate.
- (2) Extend the theory to M-nucleus + TSC nuclear interaction
- EQPET: Electronic Quasi-Particle Expansion Theory

Basic Mechanism will be:

- Formation of
- Tetrahedral Symmetric Condensate (TSC):
- 4 deuterons + 4 electrons make
 - a transient Bose-type condensation
 - by 3-dimensionaly
 - constraint squeezing motion

How small can TSC size become?

The Place where TSC is born?

- 1)In Natural Gas-Phase of D₂ (H₂): Very small probability for two D₂(H₂) molecules to make orthogonally coupled state.
 - → Possible at very low temperature? (Bose-Einstein Condensation)
- 2)In Surface-Lattice conditions: O(T)-Sites, Defect/Void, Fractal-surface (adatom +dimer + corner-hole)
 - → (Dynamic Bose Condensation of TSC)

Phonon Excitation by Laser

- Dielectric Response Function of Metal: (Classical Drude-Model for free electron gas) $\epsilon (\omega) = 1 - (\omega_{p} \tau)^{2} / (1 + (\omega_{\tau})^{2})$ ≈ **1** – (ω p/ ω)² with $\omega_p = (4 \pi \text{Ne}^2/\text{m})^{1/2}$: plasma frequency which is over UV region (1E+15(1/s))
- 100 % penetration by $\omega > \omega_p$

EUV-Laser irradiation can excite phonons inside bulk metal!

D-Cluster Formation in PdD Transient Dynamics by Phonon Excitation

Cluster Formation Probability in Atomic Level

Tetrahedral Condensation of Deuterons in PdDx

Classical View of Tetrahedral Condensation

Transient Combination of Two D2 Molecules (upper and lower)

Squeezing only from O-Sites to T-site

3-dimension Frozen State for 4d+s and 4e-s

Quadruplet e* (4,4)

Formation of Electrons around T-site

Assumptions

- By replacing one or two deuterons in 4D TSC with one or two protons
- And assuming same velocities for d and p due to keeping charge-neutrality and energy-minimum in dynamic motion
- We can apply the model to H/D mixed systems

Basic 4-body Fusion by TSC

• D+D+D+D $\rightarrow {}^{8}\text{Be}^{*} \rightarrow {}^{4}\text{He} + {}^{4}\text{He} + 47.6\text{MeV}$

• D+D+D+H \rightarrow ⁷Be* \rightarrow ³He + ⁴He + 29.3MeV

• D+H+D+H \rightarrow ⁶Be* \rightarrow ³He + ³He + 11MeV

Combination Probability of H/D Mixed TSC Cluster

- Y = H/D
- DDDD: k(1-Y)⁴
- DDDH: k(1-Y)³Y
- DHDH: k(1-Y)²Y²
- DHHH: k(1-Y)Y³
- HHHH: kY⁴

K: Normalize sum probability to be 1.0

Combination Probability for TSC Cluster

Fusion Rate Calculation for EQPET Molecule

- $\lambda_{dddp} = (S_{dddp}/E)vP(dd)P(dp)$
- $\lambda_{dpdp} = (S_{dpdp}/E)vP(dp)P(dp)$
- $S_{dddp} = 10^9 \text{ keVb}$
- $S_{dpdp} = 10^8 \text{ keVb}$
- P(dp): Barrier factor for d-p fusion with dpe* molecule: exp(-2Γn)
- $\Gamma_n = \int (V_s E)^{1/2} dE / ((h/\pi)/(2\mu)^{1/2})$

Fusion Rate for EQPET Molecule

EQP	DDe*	DHe*	DDDDe*	DDDHe*	DHDHe*
	(f/s/cl)	(f/s/cl)	(f/s/cl)	(f/s/cl)	(f/s/cl)
e(1,1)	1E-137	1E-120	1E-252	1E-232	1E-228
e*(2,2)	1E-20	1E-23	1E-17	5E-16	2E-14
e*(4,4)	(1E-16)	(1E-21)	1E-9	1E-10	1E-10

Calculation of Modal Fusion Rate

- Wave function for TSC cluster:
 Ψt = a1 Ψ(1,1) +a2 Ψ(2,2) + a4 Ψ(4,4)
- Modal Fusion Rate: $\lambda = a_1^2 \lambda(1,1) + a_2^2 \lambda(2,2) + a_4^2 \lambda(4,4)$
- By taking into account spin arrangement only, a₁²=0.78, a₂²=0.19, a₄²=0.03

Modal Fusion Rate

 Considering statistical weights for spin arrangement, modal fusion rates were calculated using FRs of EQPET molecules

DDDD-TSC	DDDH-TSC	DHDH-TSC	
$\lambda_{dd} = 2E-21$	λ _{dp} = 1E-23	λ _{dp} = 1E-23	
(f/s/cl)	(f/s/cl)	(f/s/cl)	
$\lambda_{dddd} = 3E-11$	$\lambda_{dddp} = 4E-12$	$\lambda_{dpdp} = 3E-12$	
(f/s/cl)	(f/s/cl)	(f/s/cl)	

Using combination probabilities of H/D mixed clusters and modal fusion rates, ³He/⁴He ratios were calculated

Comparison with Experiment

Arata-Zhang; ³He/⁴He ca. 0.25
 Proc. Jpn. Acad., 73, Ser.B(1997)1-7

Present Theory;
 ³He/⁴He ca. 0.25 for H/D = 0.6

Parameters for Deep Potential Hole : by EQPET

•	(m*/m _e : Z)	depth of trapping potential (DTP)		
•	for e*	dde*	dde*e*	
•	(1,1)	- 14.87 eV	- 30.98 eV	
•	(2,2)	- 260 eV	- 446 eV	
•	(4,4)	- 2,460 eV	- 2,950 eV	
•	(8,8)	- 21.0 keV	- 10.2 keV	

•DTP values approximately correspond to Screening Energy

Emission of Photons from TSC

- Hydrogen TSC (pepepepe system) causes no nuclear fusion, but weak interaction.
- When TSC forms from normal electron state, we may have specific photon emission, e.g., at energies of 260 eV, 446 eV, 2460 eV, 2950 eV, etc.
- If we can detect these photons by hydrogen experiment, it may be proof.

Minimum Size of TSC is far less than 1 pm!

- 4d + 4e of TSC squeezes into a very small charge-neutral pseudo-particle.
- When 4d reach at the interaction range (several fm) of strong force, ⁸Be* is formed by QM-penetration through EQPET shielded potential.
- As ⁸Be* is formed, 4e are left at outer domain, which size is approximated by e*(4,4)Be atom size of 0.8 pm.

Vs Potential for $e^{(4,4)} \alpha \alpha$ molecule

min = -9.83 keV

dd(GS) = 13 pm

Vs Potential for e*(8,8)8Be8Be molecule

 $V_{min} = -32.9 \text{ keV}$ $R_{dd}(GS) = 5 \text{ pm}$ b-parameter = 60 fm (radius, OSC transient)

TSC Size by Dynamic Condensation

M + TSC Nuclear Interaction Mechanism

- Topological condition for Pion-Exchange (PEF)
- Selection of pick-up number of protons (+ neutrons for 4d/TSC) from 4p/TSC
- M + (1-4)p(or d) capture reaction

Sudden Tall Thin Barrier Approx.

When p (or d) gets into the strong force range, electrons separate and p (or d) feel suddenly Coulomb repulsion to the M-nucleus charge

- $r_0 = 1.2A^{1/3}$
- $b = r_0 + \lambda_{\pi} (=2.2 \text{ fm})$
- $P_M(E) = exp(-G)$
- G = 0.436($\mu V(R_{1/2})$)^{1/2}(b- r₀)
- $R_{1/2} = r_0 + (b r_0)/2$
- Reaction rate:
 - $\lambda = S_{Mp}(E)vP_M(E)P_n/E$
- P_n =
 - $exp(-0.218n(\mu V_{pp})^{1/2}R_{pp})$
 - : Plural p (or d) existence probability in λ_{π} range for n > 1. Pn = 1, for n = 1.

Results by STTBA calculation; M = Ni

- $P_{Mp}(E) = 9.2E-2$
- P_{Md}(E) = 3.5E-2

Reaction Rates:

- λ_{Mp} = 3.7E-8 (f/s/pair)
- λ_{Md} = 2.1E-7 (f/s/pair)
- λ_{M4p} = 1.0E-8 (f/s/pair)
- λ_{M4d} = 3.4E-9 (f/s/pair)

 $V_{pp} = 1.44/6 = 0.24 \text{ MeV}$ $P_{2p} = 0.527$ $P_{2d} = 0.404$

 $S_{Mp}(0) = 1.0E+8 \text{ kevb}$ $S_{Md}(0) = 1.0E+9 \text{ keVb}$

 $\lambda_{4d} = 4.9E-5$

- <Macroscopic Reaction Rate> = $\lambda x N_{M+TSC}$
- With $N_{M+tsc} = 1.0E+17$ in 10µnm area, Ni+4p Rate = 1E+9 f/s/cm2 and Y_{4p} = 1E+15 in 1E+6 sec.
- 1 watt = 2E+11 f/s, and 1E+9 f/s/cm² is 5 mW/cm^2

Estimation of NM+TSC

- $N_{M+TSC} = \sigma_A N_M < N_{TSC} > v_T_{TSC}$
- N_M : Host metal atom density
- NTSC : Time-averaged TSC density
- σ_A : Atomic level cross section for M+TSC combination
- TTSC : mean life time of TSC
- Note: approximated by the squeezing time of TSC from 1 angstrom domain to 5 fm domain, because strong interaction breaks TSC.

- τ_{TSC} = 45 fs (for p), 66 fs (for d)
- $\cdot \sigma_{A} = 1E-16 (cm^2)$
- $N_{M} = 1E+23$ (cm⁻³)
- \cdot N_{TSC} = 1E+20 (cm⁻³) is assumed here
- $N_{M+TSC} = 1E+19$ (cm⁻³)

Products by Ni + p reactions

⁸Ni+p→ ⁵⁹Cu*(1.36m, EC)⁵⁹Ni*(7E4 y)

⁰Ni + p \rightarrow ⁶¹Cu*(3.3h, EC)⁶¹Ni

¹Ni + p \rightarrow ⁶²Cu*(9.7m, EC)⁶²Ni

²Ni + p → ⁶³Cu(6.12MeV);Eg=669keV

```
^{4}Ni + p \rightarrow ^{65}Cu(7.45MeV)
```

i-H gas system exp. By Piantelli (ASTI5)

; 660 keV peak by Nal detector

• 660 MJ Excess Energy

Fission by M + TSC is possible!

 $^{8}Ni + 4p \rightarrow$ ⁶²Ge(11MeV) → FP ⁸Ni + 4d \rightarrow ⁶⁶Ge(54MeV) → FP $^{05}Pd + 4p \rightarrow$ ¹⁰⁹Sn(23MeV) →? $^{05}Pd + 4d \rightarrow$ ¹¹³Sn(52MeV) →FP $^{04}Pd+4d \rightarrow$ ¹¹²Sn(52MeV) → FP

any foreign elements were detected by Piantelli, Karabut, Yamada, Ohmori, Mizuno, Miley, etc.

ission can be induced by TSC capture!

¹³³Cs + TSC Reactions

- ${}^{133}Cs + d \rightarrow {}^{135}Ba(Ex=12.91MeV) \rightarrow {}^{135}Ba(stable) + gammas(12.91MeV)$
- ${}^{133}Cs + 2d \rightarrow {}^{137}La(Ex=25.32MeV) \rightarrow FPs$ or ${}^{137}La(6E+4y) + gammas$
- ${}^{133}Cs + 3d \rightarrow {}^{139}Ce(Ex=38.29MeV) \rightarrow FPs$

or ¹³⁹La(stable) + gammas

- $^{133}Cs + 4d \rightarrow ^{141}Pr(Ex=50.49MeV) \rightarrow FPs$
 - or ¹⁴¹Pr(stable) + gammas

Note: (1) + 2d is equivalent to ⁴He + 23.8MeV. (2) We need to detect 50.49 MeV gamma?

M+4d/TSC is much easier than M+4p

- Because fusion strong force (PEF values) for M+4d is about twice of M+4p
- (c.f.) $S_{dd}/S_{pd} = 10^6$ with PEF = 2 for dd and PEF = 1 for pd
- Because we need to multiply probability of anti-parallel spin arrangement for protons in 4p-TSC.

- $^{133}Cs+p \rightarrow ^{134}Ba(8.17MeV)$ $\rightarrow ^{134}Ba(stable)$
- 133 Cs+2p $\rightarrow ^{135}$ La(13.16MeV) $\rightarrow ^{135}$ Ba(stable)
- ${}^{133}Cs+3p \rightarrow {}^{136}Ce(20.28MeV)$ $\rightarrow {}^{136}Ce(stable)$ or FPs

STTBA Prediction for Cs-to-Pr

- S_{Mp} = 1E+8 kevb
- S_{Md} = 1E+9 keVb
- λ_{Mp} = 8.4E-10 f/s/pair
- λ_{M4p} = 2.3E-10 f/s/pair
- $\lambda_{Md} = 2.8E-8$ f/s/pair
- $\lambda_{M4d} = 7.6E-9$ f/s/pair
- Where combination probability of antiparallel spin was used for 4p/TSC.

- Suppose N_{M+tsc} = 1E+17 in 100 nm layer of surface
- Macro Yield = $\lambda x N_{tsc}$ = (7.6E-9) x (1E+17)
 - = 7.6E+8 (f/s/cm²)
- Cs-to-Pr rate = 4.6E+14 (atoms per week) per cm²
- Here we assumed;
 <NTSC> = 1E+22 (cm⁻³), due to high D2-flux condition in experiment

$Table: Natural \ abundance \ of \ Ni \ isotopes \ and$

the excitation energies of compound nucleus by + 4p and + 4d reactions

Nuclides	Natural abundance (%)	+ 4p	Excitation energy (MeV)	+ 4d	Excitation energy (MeV)
⁵⁸ Ni	68.077	⁶² Ge*	11.2	$^{66}\mathrm{Ge}^*$	53.9
$^{60}\mathrm{Ni}$	26.223	$^{64}\text{Ge}^*$	19.1	$^{68}\mathrm{Ge}^*$	55.1
⁶¹ Ni	1.140	$^{65}\mathrm{Ge}^*$	21.3	$^{69}\mathrm{Ge}^*$	55.4
⁶² Ni	3.634	⁶⁶ Ge*	24.0	$^{70}\mathrm{Ge}^{*}$	56.4
⁶⁴ Ni	0.926	⁶⁸ Ge*	29.0	$^{72}\mathrm{Ge}^{*}$	58.0

FP Elements by SCS vs. Miley Exp.

G. Miley and J. Patterson J. New Energy, 1996, 1, p.5

Major Fission Channels from Ni + 4p

(1) $^{58}Ni(68\%) + 4p \rightarrow {}^{62}Ge(Ex=11.2MeV)$

 \rightarrow 8.8MeV + ⁴He +⁵⁸Zn(EC)⁵⁸Cu(EC)⁵⁸Ni \rightarrow 8.8MeV + ²⁸Si + ³⁴Ar(EC)³⁴Cl(EC)³⁴S

(2) ${}^{60}\text{Ni}(26.2\%) + 4p \rightarrow {}^{64}\text{Ge}(\text{Ex=19.1MeV})$

- \rightarrow 16.4MeV + ⁴He +⁶⁰Zn(EC)⁶⁰Cu(EC)⁶⁰Ni
- \rightarrow 13.6MeV + ⁸Be + ⁵⁶Ni(EC)⁵⁶Co(EC)⁵⁶Fe
- \rightarrow 13.0MeV + ¹²C +⁵²Fe(EC)⁵²Mn(EC)⁵²Cr
- \rightarrow 12.2MeV + ¹⁶O + ⁴⁸Cr(EC)⁴⁸V(EC)⁴⁸Ti
- \rightarrow 13.5MeV + ²⁴Mg + ⁴⁰Ca
- \rightarrow 16.4MeV + ²⁸Si + ³⁶Ar
- \rightarrow 16.7MeV + ³²S + ³²S
- \rightarrow 6.5MeV + ³⁸Ar + ²⁶Si(EC)Al(10⁵y)

 Average Kinetic Energy of Fission Product = 9.7 MeV for Ni-natural

Green shows stable isotope.

Note:

- \rightarrow 17.5MeV + ³²S + ³³S

 \rightarrow 11.0MeV + ²⁰Ne + ⁴⁵Ti(EC)⁴⁵Sc

(3) ${}^{61}Ni(1.1\%) + 4p \rightarrow {}^{65}Ge(Ex=21.3MeV)$

 \rightarrow 18.9MeV + ⁴He+ ⁶¹Zn(EC)⁶¹Cu(EC)⁶¹Ni

 \rightarrow 15.9MeV +¹²C+⁵³Fe(EC)⁵³Mn(3.7x10⁶ y)

- \rightarrow 17.4MeV + ²⁸Si + ³⁷Ar(EC)³⁷Cl
- \rightarrow 12.0MeV + ²⁷Si(EC)²⁷Al + ³⁸Ar

Major Fission Channels from Ni + 4p (2)

- ${}^{62}Ni(3.6\%) + 4p \rightarrow {}^{66}Ge(Ex=24.0MeV)$
- \rightarrow 11.0MeV + n + ⁶⁵Ge(EC)⁶⁵Ga(EC)⁶⁵Zn
- \rightarrow 21.4MeV + ⁴He +⁶²Zn(EC)⁶²Cu(EC)⁶²Ni
- \rightarrow 11.5MeV + ⁸Be + ⁵⁸Ni
- \rightarrow 18.9MeV + ¹²C + ⁵⁴Fe
- \rightarrow 10.5MeV + ¹⁴N + ⁵²Mn(EC)⁵²Cr
- \rightarrow 8.2MeV + ¹⁶O + ⁵⁰Cr
- \rightarrow 13.9MeV + ²⁰Ne + ⁴⁶Ti
- \rightarrow 15.2MeV + ²⁴Mg + ⁴²Ca
- \rightarrow 13.7MeV + ²⁷Al + ³⁹K
- \rightarrow 18.9MeV + ²⁸Si + ³⁸Ar
- \rightarrow 18.6MeV + ³²S + ³⁴S
- Neutron emission channel may open!
- S-values for higher mass Ni may be larger than Ni-58 and Ni-60, due to more p-n PEF interaction.

 64 Ni(0.93%) + 4P $\rightarrow {}^{68}$ Ge(Ex=29MeV)

$$\rightarrow$$
 16.7MeV + n + ⁶⁷Ge(EC)⁶⁷Ga(EC)⁶⁷Zn

- \rightarrow 25.6Mev + ⁴He + ⁶⁴Zn
- \rightarrow 10.0MeV + ⁶Li + ⁶¹Cu(EC)⁶¹Ni
- \rightarrow 13.2MeV +⁸Be + ⁵⁷Ni(EC)⁵⁷Co(EC)⁵⁷Fe
- \rightarrow 10.9MeV + ⁹Be + ⁵⁹Ni(EC)⁵⁹Co
- \rightarrow 9.9MeV + ¹⁰B + ⁵⁸Co(EC)⁵⁸Fe
- \rightarrow 22.7MeV + ¹²C + ⁵⁶Fe
- \rightarrow 14.8MeV + ¹⁴N + ⁵⁴Mn(EC)⁵⁴Cr
- \rightarrow 12.7MeV + ¹⁶O + ⁵²Cr
- \rightarrow 17.6MeV + ²⁰Ne + ⁴⁸Ti
- \rightarrow 12.7MeV + ²³Na + ⁴⁵Sc
- \rightarrow 17.5MeV + ²⁴Mg + ⁴⁴Ca
- \rightarrow 14.8MeV + ²⁷Al + ⁴¹K
- \rightarrow 18.7MeV + ²⁸Si + ⁴⁰Ar
- \rightarrow 18.7MeV + ³²S + ³⁶S

FP Distribution vs. Z, for Au + 4p/TSC

Secondary Reactions by ³He

- ³He by D+D+D+H fusion has 16.7 MeV, and by D+H+D+H fusion 5.5 MeV.
- Coulomb Barriers:
 Cs + ³He : 15.7 MeV
 Pd + ³He : 14.1 MeV
- Small reaction is predicted by 16.7 MeV ³He during its slowing down,
- and nothing by 5.5 MeV ³He.

³He for Stable Nuclear Fuel

 Stable Resource to produce Tritium: ³He + n → p + t + 0.765 MeV: in fission reactor or spallation source. Easy to extract T from gas-phase. Tritium decays with 12.3 yrs half life. For DT reactors and H-bomb.

(neutron detector)

• Fuel for D-³He reactors.

Conclusions

- H should be contained with some amount in usual CMNS deuterium-experiment.
- EQPET model was applied to 4-body fusion of mixed H/D TSC-system.
- ³He/⁴He production ratio was 0.16 for 50 % H-contamination.
- ³He is useful nuclear fuel.
- Formation of TSC is Key!
- Possibility of direct nuclear reaction for M+TSC. (Further study is expected.)