${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ Production Ratio by Tetrahedral Symmetric Condensation

Akito Takahashi
To be presented at ICCF11 Marseille, Nov.1-5, 2004

AIMS

- Some works report ${ }^{3} \mathrm{He}$ generation, in addition to ${ }^{4} \mathrm{He}$: Arata-Zhang, McKubre et al., and so on
- (1)Based on EQPET model to treat 4-body resonance fusion of mixed H/D state under tetrahedral symmetric condensation (TSC), calculation is made to estimate variation of ${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ production ratio as a function of H/D mixing rate.
- (2) Extend the theory to M-nucleus + TSC nuclear interaction
- EQPET: Electronic Quasi-Particle Expansion Theory

Basic Mechanism will be:

- Formation of

Tetrahedral Symmetric Condensate (TSC):
4 deuterons + 4 electrons make
a transient Bose-type condensation by 3-dimensionaly
constraint squeezing motion

> How small can TSC size become?

The Place where TSC is born?

1)In Natural Gas-Phase of $\mathrm{D}_{2}\left(\mathrm{H}_{2}\right)$: Very small probability for two $\mathrm{D}_{2}\left(\mathrm{H}_{2}\right)$ molecules to make orthogonally coupled state.
\rightarrow Possible at very low temperature?
(Bose-Einstein Condensation)
2)In Surface-Lattice conditions: $\mathbf{O}(\mathrm{T})$-Sites, Defect/Void, Fractal-surface (adatom +dimer + corner-hole)
\rightarrow (Dynamic Bose Condensation of TSC)

Phonon Excitation by Laser

- Dielectric Response Function of Metal: (Classical Drude-Model for free electron gas)

$$
\begin{aligned}
\varepsilon(\omega) & =1-(\omega \mathrm{p} \tau)^{2} /\left(1+(\omega \tau)^{2}\right) \\
& \approx 1-(\omega \mathrm{p} / \omega)^{2}
\end{aligned}
$$

with $\omega_{\mathrm{p}}=\left(4 \pi \mathrm{Ne}^{2} / \mathrm{m}\right)^{1 / 2}$: plasma frequency
which is over UV region (1E+15 (1/s))

- 100 \% penetration by $\omega>\omega p$

EUV-Laser irradiation can excite phonons inside bulk metal!

D-Cluster Formation in PdD Transient Dynamics by Phonon Excitation

Electren-Plame - Pheron Caypling and Traxiont D-Cluton Formation $\Rightarrow[$ Collision-like Proars $] \Rightarrow[R] A \frac{\Delta t}{T} \cdot[R]_{\text {stededy durten }}$

-
OCTAKHON NT
17 IIFALLABIUK
Fig. 1. The FCC latrice of HAD , and mucering of ossite dewerons onlo the t-sile.

Fig. 3. Inage of uansient dytamica for microcopic clutering of detetons.

3
For
ter
F_{1}
F_{1} and

Cluster Formation Probability in Atomic Level

-Calculation by Excitation Screening Model, Fusion Tec. 1991

Tetrahedral Condensation of Deuterons in PdDx

Classical View of Tetrahedral Condensation

Orthogonal Coupling of Two D_{2} Molecule makes Miracle!

Transient
Combination of Two D2 Molecules (upper and lower)

Squeezing only from O-Sites to T-site

3-dimension Frozen State for $4 d+s$ and $4 e-s$

Quadruplet e* $(4,4)$

Formation of Electrons around
T-site

Assumptions

- By replacing one or two deuterons in 4D TSC with one or two protons
- And assuming same velocities for d and p due to keeping charge-neutrality and energy-minimum in dynamic motion
- We can apply the model to H/D mixed systems

Basic 4-body Fusion by TSC

- $\mathrm{D}+\mathrm{D}+\mathrm{D}+\mathrm{D} \rightarrow{ }^{8} \mathrm{Be}^{*} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}+47.6 \mathrm{MeV}$
- $\mathrm{D}+\mathrm{D}+\mathrm{D}+\mathrm{H} \rightarrow{ }^{7} \mathrm{Be}^{*} \rightarrow{ }^{3} \mathrm{He}+{ }^{4} \mathrm{He}+29.3 \mathrm{MeV}$
- $\mathrm{D}+\mathrm{H}+\mathrm{D}+\mathrm{H} \rightarrow{ }^{6} \mathrm{Be}^{*} \rightarrow{ }^{3} \mathrm{He}+{ }^{3} \mathrm{He}+11 \mathrm{MeV}$

Combination Probability of H/D Mixed TSC Cluster

- $\mathrm{Y}=\mathrm{H} / \mathrm{D}$
- DDDD: $k(1-Y)^{4}$
- DDDH: $k(1-Y)^{3} Y$
- DHDH: $k(1-Y)^{2} Y^{2}$
- DHHH: $k(1-Y) Y^{3}$
- HHHH: kY ${ }^{4}$

K: Normalize sum probability to be 1.0

Combination Probability for TSC Cluster

C om bination Probability for TSC C luster

Fusion Rate Calculation for EQPET Molecule

- $\lambda_{\text {dddp }}=\left(S_{d d d p} / E\right) v P(d d) P(d p)$
- $\lambda_{d p d p}=\left(S_{d p d p} / E\right) v P(d p) P(d p)$
- $S_{\text {dddp }}=10^{9} \mathrm{keVb}$
- $S_{d p d p}=10^{8} \mathrm{keVb}$
- $P(d p)$: Barrier factor for d-p fusion with dpe* molecule: $\exp \left(-2 \Gamma_{n}\right)$
- $\Gamma_{\mathrm{n}}=\int\left(\mathrm{V}_{\mathrm{s}}-\mathrm{E}\right)^{1 / 2} \mathrm{dE} /\left((\mathrm{h} / \pi) /(2 \mu)^{1 / 2}\right)$

Fusion Rate for EQPET Molecule

EQP	DDe $(\mathrm{f} / \mathrm{s} / \mathrm{cl})$	DHe $(\mathrm{f} / \mathrm{s} / \mathrm{cl})$	DDDDe $(\mathrm{f} / \mathrm{s} / \mathrm{cl})$	DDDHe $(\mathrm{f} / \mathrm{s} / \mathrm{cl})$	DHDHe* $(\mathrm{f} / \mathrm{s} / \mathrm{cl})$
$\mathrm{e}(1,1)$	$1 \mathrm{E}-137$	$1 \mathrm{E}-120$	$1 \mathrm{E}-252$	$1 \mathrm{E}-232$	$1 \mathrm{E}-228$
$\mathrm{e}^{*}(2,2)$	$1 \mathrm{E}-20$	$1 \mathrm{E}-23$	$1 \mathrm{E}-17$	$5 \mathrm{E}-16$	$2 \mathrm{E}-14$
$\mathrm{e}^{*}(4,4)$	$(1 \mathrm{E}-16)$	$(1 \mathrm{E}-21)$	$1 \mathrm{E}-9$	$1 \mathrm{E}-10$	$1 \mathrm{E}-10$

Calculation of Modal Fusion Rate

- Wave function for TSC cluster:

$$
\Psi_{\mathrm{t}}=\mathrm{a}_{1} \Psi(1,1)+\mathrm{a}_{2} \Psi(2,2)+\mathrm{a}_{4} \Psi(4,4)
$$

- Modal Fusion Rate:

$$
\lambda=a_{1}{ }^{2} \lambda(1,1)+a_{2}^{2} \lambda(2,2)+a_{4}^{2} \lambda(4,4)
$$

- By taking into account spin arrangement only, $a_{1}{ }^{2}=0.78, a_{2}{ }^{2}=0.19, a_{4}{ }^{2}=0.03$

Modal Fusion Rate

- Considering statistical weights for spin arrangement, modal fusion rates were calculated using FRs of EQPET molecules

DDDD-TSC	DDDH-TSC	DHDH-TSC
$\lambda_{\mathrm{dd}}=2 \mathrm{E}-21$ (f/s/cl)	$\begin{array}{r} \lambda_{\mathrm{dp}}=1 \mathrm{E}-23 \\ (\mathrm{f} / \mathrm{s} / \mathrm{cl}) \end{array}$	$\begin{array}{r} \lambda_{\mathrm{dp}}=1 \mathrm{E}-23 \\ (\mathrm{f} / \mathrm{s} / \mathrm{cl}) \end{array}$
$\begin{array}{r} \lambda_{\text {dddd }}=3 \mathrm{E}-11 \\ (\mathrm{f} / \mathrm{s} / \mathrm{cl}) \end{array}$	$\lambda_{\text {dddp }}=4 \mathrm{E}-12$ (f/s/cl)	$\begin{array}{r} \lambda_{\text {dpdp }}=3 \mathrm{E}-12 \\ (\mathrm{f} / \mathrm{s} / \mathrm{cl}) \end{array}$

Using combination probabilities of H/D mixed clusters and modal fusion rates, ${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ ratios were calculated

$\mathrm{He}-3 / \mathrm{He}-4$ Production Ratio for TSC Fusion

Comparison with Experiment

- Arata-Zhang; ${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ ca. 0.25

Proc. Jpn. Acad., 73, Ser.B(1997)1-7

- Present Theory;
${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ ca. 0.25 for H/D $=0.6$

Parameters for Deep Potential Hole : by EQPET

- $\left(\mathrm{m}^{*} / \mathrm{m}_{\mathrm{e}}: \mathrm{Z}\right)$	depth of trapping potential (DTP)	
- for e^{*}	dde*	dde*e*
- $(1,1)$	-14.87 eV	-30.98 eV
- $(2,2)$	-260 eV	-446 eV
- $(4,4)$	$-2,460 \mathrm{eV}$	$-2,950 \mathrm{eV}$
$-(8,8)$	-21.0 keV	-10.2 keV

-DTP values approximately correspond to Screening Energy

Emission of Photons from TSC

- Hydrogen TSC (pepepepe system) causes no nuclear fusion, but weak interaction.
- When TSC forms from normal electron state, we may have specific photon emission, e.g., at energies of $260 \mathrm{eV}, 446$ $\mathrm{eV}, 2460 \mathrm{eV}, 2950 \mathrm{eV}$, etc.
- If we can detect these photons by hydrogen experiment, it may be proof.

Minimum Size of TSC is far less than 1 pm !

- 4d +4 e of TSC squeezes into a very small charge-neutral pseudo-particle.
- When 4d reach at the interaction range (several fm) of strong force, ${ }^{8} \mathrm{Be}$ * is formed by QM-penetration through EQPET shielded potential.
- As ${ }^{8} \mathrm{Be}^{*}$ is formed, 4 e are left at outer domain, which size is approximated by $\mathrm{e}^{\star}(4,4) \mathrm{Be}$ atom size of 0.8 pm .

V_{s} Potential for $\mathrm{e}^{*}(4,4) \alpha \alpha$ molecule

min $=-9.83 \mathrm{keV}$
$\mathrm{dd}(\mathrm{GS})=13 \mathrm{pm}$

V_{s} Potential for $\mathrm{e}^{*}(8,8)^{8} \mathrm{Be}^{8} \mathrm{Be}$ molecule

$$
\begin{gathered}
V_{\min }=-32.9 \mathrm{keV} \\
\mathrm{Rdd}(\mathrm{GS})=5 \mathrm{pm} \\
\text { b-parameter }=60 \mathrm{fm} \text { (radius, OSC transient) }
\end{gathered}
$$

TSC Size by Dynamic Condensation

Target Atom Outer Electron Cloud (ca. 100 pm)
 -

K-Shell e^{-}
And Nucleus

M + TSC

Nuclear Interaction Mechanism

M-nucleus

Range of Strong interaction $(3-5 \mathrm{fm})$

- Topological condition for Pion-Exchange (PEF)
- Selection of pick-up number of protons (+ neutrons for 4d/TSC) from 4p/TSC
- $M+(1-4) p(o r d)$
capture reaction

Sudden Tall Thin Barrier Approx.

When p (or d) gets into the strong force range, electrons separate and p (or d) feel suddenly Coulomb repulsion to the M-nucleus charge

- $r_{0}=1.2 A^{1 / 3}$
- $b=r_{0}+\lambda_{\pi}(=2.2 \mathrm{fm})$
- $\mathrm{P}_{\mathrm{m}}(\mathrm{E})=\exp (-G)$
- $G=0.436\left(\mu \mathrm{~V}\left(\mathrm{R}_{1 / 2}\right)\right)^{1 / 2}\left(\mathrm{~b}-\mathrm{r}_{0}\right)$
- $R_{1 / 2}=r_{0}+\left(b-r_{0}\right) / 2$
- Reaction rate:
$\lambda=S_{m_{p}}(E) v P_{m}(E) P_{n} / E$
- $\mathrm{P}_{\mathrm{n}}=$
$\exp \left(-0.218 n\left(\mu V_{p p}\right)^{1 / 2} R_{p p}\right)$
: Plural p (or d) existence probability in λ_{π} range for $n>1$. $P_{n}=1$, for $n=1$.

Results by STTBA calculation; $\mathrm{M}=\mathrm{Ni}$

- $\mathrm{P}_{\mathrm{Mp}}(\mathrm{E})=9.2 \mathrm{E}-2$
- $P_{\text {мd }}(E)=3.5 E-2$

Reaction Rates:

- $\lambda_{\text {мр }}=3.7 \mathrm{E}-8$ (f/s/pair)
- $\lambda_{\text {мd }}=2.1 \mathrm{E}-7$ (f/s/pair)
- $\lambda_{\text {м4р }}=1.0 \mathrm{E}-8$ (f/s/pair)
- $\lambda_{\text {маd }}=3.4 \mathrm{E}-9$ (f/s/pair)

$$
\begin{gathered}
V_{p p}=1.44 / 6=0.24 \mathrm{MeV} \\
P_{2 p}=0.527 \\
P_{2 d}=0.404
\end{gathered}
$$

$$
\begin{aligned}
& S_{M p}(0)=1.0 \mathrm{E}+8 \mathrm{kevb} \\
& \mathrm{Sma}_{\mathrm{mo}}(0)=1.0 \mathrm{E}+9 \mathrm{keVb}
\end{aligned}
$$

$$
\lambda_{4 d}=4.9 \mathrm{E}-5
$$

- <Macroscopic Reaction Rate> $=\lambda x N_{M+T s c}$
- With $N_{m+s c}=1.0 \mathrm{E}+17$ in $10 \mu n m$ area, $\mathrm{Ni}+4 \mathrm{p}$ Rate $=1 \mathrm{E}+9 \mathrm{f} / \mathrm{s} / \mathrm{cm} 2$ and $\mathrm{Y}_{4 \mathrm{p}}=1 \mathrm{E}+15 \mathrm{in} 1 \mathrm{E}+6 \mathrm{sec}$.
- 1 watt $=2 E+11 \mathrm{f} / \mathrm{s}$, and $1 E+9 \mathrm{f} / \mathrm{s} / \mathrm{cm}^{2}$ is $5 \mathrm{~mW} / \mathrm{cm}^{2}$

Estimation of $\mathrm{N}_{\mathrm{m}+\mathrm{Ts}}$

- $\mathrm{N}_{\mathrm{M}+\mathrm{TSC}}=\sigma_{\mathrm{A}} \mathrm{N}_{\mathrm{M}}<\mathrm{N}_{\mathrm{TSC}}>\mathrm{VVT}_{T S C}$
- N_{M} : Host metal atom density
- Ntsc : Time-averaged TSC density
- σ_{A} : Atomic level cross section for M+TSC combination
- TTSc : mean life time of TSC
- Note: approximated by the squeezing time of TSC from 1 angstrom domain to 5 fm domain, because strong interaction breaks TSC.
- $\tau_{\text {Tsc }}=45 \mathrm{fs}($ for p$)$, 66 fs
(for d)
- $\sigma_{\mathrm{a}}=1 \mathrm{E}-16\left(\mathrm{~cm}^{2}\right)$
- $\mathrm{N}_{\mathrm{n}}=1 \mathrm{E}+23\left(\mathrm{~cm}^{-3}\right)$
- $\mathrm{N}_{\text {TSC }}=1 \mathrm{E}+20\left(\mathrm{~cm}^{-3}\right)$ is assumed here
- $\mathrm{N}_{\mathrm{N}+\mathrm{TSC}}=1 \mathrm{E}+19\left(\mathrm{~cm}^{-3}\right)$

Products by $\mathrm{Ni}+\mathrm{p}$ reactions

${ }^{8} \mathrm{Ni}+\mathrm{p} \rightarrow$

$$
\begin{aligned}
& { }^{59} \mathrm{Cu}^{*}(1.36 \mathrm{~m}, \mathrm{EC})^{59} \mathrm{Ni}^{*}(7 \mathrm{E} 4 \mathrm{y}) \\
& { }^{0} \mathrm{Ni}+\mathrm{p} \rightarrow \\
& { }^{61} \mathrm{Cu}^{*}(3.3 \mathrm{~h}, \mathrm{EC})^{61} \mathrm{Ni}
\end{aligned}
$$

${ }^{1} \mathrm{Ni}+\mathrm{p} \rightarrow$
$\left.{ }^{62} \mathrm{Cu}^{*}(9.7 \mathrm{~m}, \mathrm{EC})\right)^{62} \mathrm{Ni}$
${ }^{2} \mathrm{Ni}+\mathrm{p} \rightarrow$
${ }^{63} \mathrm{Cu}(6.12 \mathrm{MeV}) ; E g=669 \mathrm{keV}$
${ }^{4} \mathrm{Ni}+\mathrm{p} \rightarrow{ }^{65} \mathrm{Cu}(7.45 \mathrm{MeV})$
i-H gas system exp. By Piantelli (ASTI5)
; 660 keV peak by Nal detector

- 660 MJ Excess Energy

Fission by M + TSC is possible!

$$
\begin{aligned}
& { }^{8} \mathrm{Ni}+4 \mathrm{p} \rightarrow \\
& \quad{ }^{62} \mathrm{Ge}(11 \mathrm{MeV}) \rightarrow \mathrm{FP}
\end{aligned}
$$

${ }^{8} \mathrm{Ni}+4 \mathrm{~d} \rightarrow$
${ }^{66} \mathrm{Ge}(54 \mathrm{MeV}) \rightarrow \mathrm{FP}$
${ }^{05} \mathrm{Pd}+4 \mathrm{p} \rightarrow$ ${ }^{109} \mathrm{Sn}(23 \mathrm{MeV}) \rightarrow$?
${ }^{05} \mathrm{Pd}+4 \mathrm{~d} \rightarrow$
${ }^{113} \mathrm{Sn}(52 \mathrm{MeV}) \rightarrow \mathrm{FP}$
${ }^{04} \mathrm{Pd}+4 \mathrm{~d} \rightarrow$
${ }^{112} \mathrm{Sn}(52 \mathrm{MeV}) \rightarrow \mathrm{FP}$
any foreign elements were detected by

Piantelli, Karabut, Yamada, Ohmori, Mizuno, Miley, etc.
ission can be induced by TSC capture!

${ }^{133} \mathrm{Cs}+$ TSC Reactions

- ${ }^{133} \mathrm{Cs}+\mathrm{d} \rightarrow{ }^{135} \mathrm{Ba}(\mathrm{Ex}=12.91 \mathrm{MeV}) \rightarrow$ ${ }^{135} \mathrm{Ba}($ stable $)+$ gammas $(12.91 \mathrm{MeV})$
- ${ }^{133} \mathrm{Cs}+2 \mathrm{~d} \rightarrow{ }^{137} \mathrm{La}(\mathrm{Ex}=25.32 \mathrm{MeV}) \rightarrow \mathrm{FPs}$ or ${ }^{137} \mathrm{La}(6 \mathrm{E}+4 \mathrm{y})+$ gammas
- ${ }^{133} \mathrm{Cs}+3 \mathrm{~d} \rightarrow{ }^{139} \mathrm{Ce}(\mathrm{Ex}=38.29 \mathrm{MeV}) \rightarrow \mathrm{FPs}$ or ${ }^{139}$ La(stable) + gammas
- ${ }^{133} \mathrm{Cs}+4 \mathrm{~d} \rightarrow{ }^{141} \mathrm{Pr}(\mathrm{Ex}=50.49 \mathrm{MeV}) \rightarrow$ FPs or ${ }^{141} \mathrm{Pr}$ (stable) + gammas
Note: (1) +2 d is equivalent to ${ }^{4} \mathrm{He}+23.8 \mathrm{MeV}$.
(2) We need to detect 50.49 MeV gamma?

$M+4 d / T S C$ is much easier than $M+4 p$

- Because fusion strong force (PEF values) for $\mathrm{M}+4 \mathrm{~d}$ is about twice of $M+4 p$
- (c.f.) $\mathrm{Sdd}_{\mathrm{dd}} / \mathrm{Spd}_{\mathrm{pd}}=10^{6}$
with PEF $=2$ for dd and PEF = 1 for pd
- Because we need to multiply probability of anti-parallel spin arrangement for protons in 4pTSC.
- ${ }^{133} \mathrm{Cs}+\mathrm{p} \rightarrow{ }^{134} \mathrm{Ba}(8.17 \mathrm{MeV})$
$\rightarrow{ }^{134} \mathrm{Ba}$ (stable)
- ${ }^{133} \mathrm{Cs}+2 \mathrm{p} \rightarrow{ }^{135} \mathrm{La}(13.16 \mathrm{MeV})$
$\rightarrow{ }^{135} \mathrm{Ba}$ (stable)
- ${ }^{133} \mathrm{Cs}+3 \mathrm{p} \rightarrow{ }^{136} \mathrm{Ce}(20.28 \mathrm{MeV})$
$\rightarrow{ }^{136} \mathrm{Ce}$ (stable) or FPs
- ${ }^{133} \mathrm{Cs}+4 \mathrm{p} \rightarrow$
${ }^{137} \operatorname{Pr}(24.28 \mathrm{MeV}, 1.28 \mathrm{~d})$
$\rightarrow{ }^{137} \mathrm{Ce}(1.43 \mathrm{~d}){ }^{137} \mathrm{La}$ or FPs

STTBA Prediction for Cs-to-Pr

- $S_{m p}=1 E+8$ kevb
- $S_{m d}=1 \mathrm{E}+9 \mathrm{keVb}$
- $\lambda_{\mathrm{mp}}=8.4 \mathrm{E}-10 \mathrm{f} / \mathrm{s} / \mathrm{pair}$
- $\lambda_{\mathrm{m} 4 \mathrm{p}}=2.3 \mathrm{E}-10 \mathrm{f} / \mathrm{s} / \mathrm{pair}$
- $\lambda_{\text {мd }}=2.8 \mathrm{E}-8 \mathrm{f} / \mathrm{s} /$ pair
- $\lambda_{\text {m4d }}=7.6 \mathrm{E}-9 \mathrm{f} / \mathrm{s} /$ pair
- Where combination probability of antiparallel spin was used for $4 p / T S C$.
- Suppose $\mathrm{N}_{\mathrm{m}+\mathrm{sc}}=1 \mathrm{E}+17$ in 100 nm layer of surface
- Macro Yield $=\lambda \times N_{\text {tsc }}=(7.6 \mathrm{E}-9) \times(1 \mathrm{E}+17)$ $=7.6 \mathrm{E}+8\left(\mathrm{f} / \mathrm{s} / \mathrm{cm}^{2}\right)$
- Cs-to-Pr rate =
4.6E+14 (atoms per week) per cm ${ }^{2}$
- Here we assumed;
<NTSc> = 1E+22 (cm-3), due to high D2-flux condition in experiment

Table : Natural abundance of Ni isotopes and
the excitation energies of compound nucleus by +4 p and +4 d reactions

Nuclides	Natural abundance $(\%)$	+4 p	Excitation energy (MeV)	+4 d	Excitation energy (MeV)
${ }^{58} \mathrm{Ni}$	68.077	${ }^{62} \mathrm{Ge}^{*}$	11.2	${ }^{66} \mathrm{Ge}^{*}$	53.9
${ }^{60} \mathrm{Ni}$	26.223	${ }^{64} \mathrm{Ge}^{*}$	19.1	${ }^{68} \mathrm{Ge}^{*}$	55.1
${ }^{61} \mathrm{Ni}$	1.140	${ }^{65} \mathrm{Ge}^{*}$	21.3	${ }^{69} \mathrm{Ge}^{*}$	55.4
${ }^{62} \mathrm{Ni}$	3.634	$66 \mathrm{Ge}^{*}$	24.0	${ }^{70} \mathrm{Ge}^{*}$	56.4
${ }^{64 \mathrm{Ni}}$	0.926	$68 \mathrm{Ge}^{*}$	29.0	${ }^{72} \mathrm{Ge}^{*}$	58.0

FP Elements by SCS vs. Miley Exp.

> G. Miley and J. Patterson
> J. New Energy, 1996, 1, p. 5

$\mathrm{Ni}+4 \mathrm{p} /$ TSC to fission Calculated by
Selective Channel Fission Model

Major Fission Channels from $\mathrm{Ni}+4 \mathrm{p}$

$$
\text { (1) } \begin{aligned}
&{ }^{58} \mathrm{Ni}(68 \%)+4 \mathrm{p} \rightarrow{ }^{62} \mathrm{Ge}(\mathrm{Ex}=11.2 \mathrm{MeV}) \\
& \rightarrow 8.8 \mathrm{MeV}+{ }^{4} \mathrm{He}+{ }^{58} \mathrm{Zn}(\mathrm{EC})^{58} \mathrm{Cu}(\mathrm{EC})^{58} \mathrm{Ni} \\
& \rightarrow 8.8 \mathrm{MeV}+{ }^{28} \mathrm{Si}+{ }^{34} \mathrm{Ar}(\mathrm{EC})^{34} \mathrm{Cl}(\mathrm{EC})^{34} \mathrm{~S} \\
& \text { (2) } \begin{aligned}
& 60 \mathrm{Ni}(26.2 \%)+4 \mathrm{p} \rightarrow{ }^{64} \mathrm{Ge}(\mathrm{Ex}=19.1 \mathrm{MeV}) \\
& \rightarrow 16.4 \mathrm{MeV}+{ }^{4} \mathrm{He}+{ }^{60} \mathrm{Zn}(\mathrm{EC})^{60} \mathrm{Cu}(\mathrm{EC})^{60} \mathrm{Ni} \\
\rightarrow & 13.6 \mathrm{MeV}+{ }^{8} \mathrm{Be}+{ }^{56} \mathrm{Ni}(\mathrm{EC})^{56} \mathrm{Co}(\mathrm{EC})^{56} \mathrm{Fe} \\
\rightarrow & 13.0 \mathrm{MeV}+{ }^{12} \mathrm{C}+{ }^{52} \mathrm{Fe}(\mathrm{EC})^{52} \mathrm{Mn}(\mathrm{EC})^{52} \mathrm{Cr} \\
\rightarrow & 12.2 \mathrm{MeV}+{ }^{16} \mathrm{O}+{ }^{48} \mathrm{Cr}(\mathrm{EC})^{48} \mathrm{~V}(\mathrm{EC})^{48} \mathrm{Ti} \\
\rightarrow & 13.5 \mathrm{MeV}+{ }^{24} \mathrm{Mg}+{ }^{40} \mathrm{Ca} \\
\rightarrow & 16.4 \mathrm{MeV}+{ }^{28} \mathrm{Si}+{ }^{36} \mathrm{Ar} \\
\rightarrow & 16.7 \mathrm{MeV}+{ }^{32} \mathrm{~S}+{ }^{32} \mathrm{~S} \\
\rightarrow & 6.5 \mathrm{MeV}+{ }^{38} \mathrm{Ar}+{ }^{26} \mathrm{Si}(\mathrm{EC}) \mathrm{Al}\left(10^{5} \mathrm{y}\right)
\end{aligned}
\end{aligned}
$$

(3) ${ }^{61} \mathrm{Ni}(1.1 \%)+4 \mathrm{p} \rightarrow{ }^{65} \mathrm{Ge}(\mathrm{Ex}=21.3 \mathrm{MeV})$
$\rightarrow 18.9 \mathrm{MeV}+{ }^{4} \mathrm{He}+{ }^{61} \mathrm{Zn}(E C)^{61} \mathrm{Cu}(E C)^{61} \mathrm{Ni}$
$\rightarrow 15.9 \mathrm{MeV}+{ }^{12} \mathrm{C}+{ }^{53} \mathrm{Fe}(\mathrm{EC})^{53} \mathrm{Mn}\left(3.7 \times 10^{6} \mathrm{y}\right)$
$\rightarrow 11.0 \mathrm{MeV}+{ }^{20} \mathrm{Ne}+{ }^{45} \mathrm{Ti}(\mathrm{EC})^{45} \mathrm{Sc}$
$\rightarrow 17.4 \mathrm{MeV}+{ }^{28} \mathrm{Si}+{ }^{37} \mathrm{Ar}(\mathrm{EC})^{37} \mathrm{Cl}$
$\rightarrow 12.0 \mathrm{MeV}+{ }^{27} \mathrm{Si}(\mathrm{EC})^{27} \mathrm{Al}+{ }^{38} \mathrm{Ar}$
$\rightarrow 17.5 \mathrm{MeV}+{ }^{32} \mathrm{~S}+{ }^{33} \mathrm{~S}$

Note:

- Green shows stable isotope. - Average Kinetic Energy of Fission Product $=9.7 \mathrm{MeV}$ for Ni-natural

Major Fission Channels from Ni +4p (2)

- ${ }^{62} \mathrm{Ni}(3.6 \%)+4 \mathrm{p} \rightarrow{ }^{66} \mathrm{Ge}(\mathrm{Ex}=24.0 \mathrm{MeV})$
$\rightarrow 11.0 \mathrm{MeV}+\mathrm{n}+{ }^{65} \mathrm{Ge}(\mathrm{EC})^{65} \mathrm{Ga}(\mathrm{EC})^{65} \mathrm{Zn}$
$\rightarrow 21.4 \mathrm{MeV}+{ }^{4} \mathrm{He}+{ }^{62} \mathrm{Zn}(E C)^{62} \mathrm{Cu}(E C)^{62} \mathrm{Ni}$
$\rightarrow 11.5 \mathrm{MeV}+{ }^{8} \mathrm{Be}+{ }^{58} \mathrm{Ni}$
$\rightarrow 18.9 \mathrm{MeV}+{ }^{12} \mathrm{C}+{ }^{54} \mathrm{Fe}$
$\rightarrow 10.5 \mathrm{MeV}+{ }^{14} \mathrm{~N}+{ }^{52} \mathrm{Mn}(\mathrm{EC})^{52} \mathrm{Cr}$
$\rightarrow 8.2 \mathrm{MeV}+{ }^{16} \mathrm{O}+{ }^{50} \mathrm{Cr}$
$\rightarrow 13.9 \mathrm{MeV}+{ }^{20} \mathrm{Ne}+{ }^{46} \mathrm{Ti}$
$\rightarrow 15.2 \mathrm{MeV}+{ }^{24} \mathrm{Mg}+{ }^{42} \mathrm{Ca}$
$\rightarrow 13.7 \mathrm{MeV}+{ }^{27} \mathrm{Al}+{ }^{39} \mathrm{~K}$
$\rightarrow 18.9 \mathrm{MeV}+{ }^{28} \mathrm{Si}+{ }^{38} \mathrm{Ar}$
$\rightarrow 18.6 \mathrm{MeV}+{ }^{32} \mathrm{~S}+{ }^{34} \mathrm{~S}$
- Neutron emission channel may open!
- S-values for higher mass Ni may be larger than Ni-58 and Ni-60, due to more p-n PEF interaction.
- ${ }^{64} \mathrm{Ni}(0.93 \%)+4 \mathrm{P} \rightarrow{ }^{68} \mathrm{Ge}(\mathrm{Ex}=29 \mathrm{MeV})$
$\rightarrow 16.7 \mathrm{MeV}+\mathrm{n}+{ }^{67} \mathrm{Ge}(\mathrm{EC})^{67} \mathrm{Ga}(\mathrm{EC})^{67} \mathrm{Zn}$
$\rightarrow 25.6 \mathrm{Mev}+{ }^{4} \mathrm{He}+{ }^{64} \mathrm{Zn}$
$\rightarrow 10.0 \mathrm{MeV}+{ }^{6} \mathrm{Li}+{ }^{61} \mathrm{Cu}(\mathrm{EC})^{61} \mathrm{Ni}$
$\rightarrow 13.2 \mathrm{MeV}+{ }^{8} \mathrm{Be}+{ }^{57} \mathrm{Ni}(\mathrm{EC})^{57} \mathrm{Co}(\mathrm{EC})^{57} \mathrm{Fe}$
$\rightarrow 10.9 \mathrm{MeV}+{ }^{9} \mathrm{Be}+{ }^{59} \mathrm{Ni}(\mathrm{EC}){ }^{59} \mathrm{Co}$
$\rightarrow 9.9 \mathrm{MeV}+{ }^{10} \mathrm{~B}+{ }^{58} \mathrm{Co}(\mathrm{EC})^{58} \mathrm{Fe}$
$\rightarrow 22.7 \mathrm{MeV}+{ }^{12} \mathrm{C}+{ }^{56} \mathrm{Fe}$
$\rightarrow 14.8 \mathrm{MeV}+{ }^{14} \mathrm{~N}+{ }^{54} \mathrm{Mn}(\mathrm{EC}){ }^{54} \mathrm{Cr}$
$\rightarrow 12.7 \mathrm{MeV}+{ }^{16} \mathrm{O}+{ }^{52} \mathrm{Cr}$
$\rightarrow 17.6 \mathrm{MeV}+{ }^{20} \mathrm{Ne}+{ }^{48} \mathrm{Ti}$
$\rightarrow 12.7 \mathrm{MeV}+{ }^{23} \mathrm{Na}+{ }^{45} \mathrm{Sc}$
$\rightarrow 17.5 \mathrm{MeV}+{ }^{24} \mathrm{Mg}+{ }^{44} \mathrm{Ca}$
$\rightarrow 14.8 \mathrm{MeV}+{ }^{27} \mathrm{Al}+{ }^{41} \mathrm{~K}$
$\rightarrow 18.7 \mathrm{MeV}+{ }^{28} \mathrm{Si}+{ }^{40} \mathrm{Ar}$
$\rightarrow 18.7 \mathrm{MeV}+{ }^{32} \mathrm{~S}+{ }^{36} \mathrm{~S}$

FP Distribution vs. Z, for $A u+4 p / T S C$

Secondary Reactions by ${ }^{3} \mathrm{He}$

- ${ }^{3} \mathrm{He}$ by $\mathrm{D}+\mathrm{D}+\mathrm{D}+\mathrm{H}$ fusion has 16.7 MeV , and by D+H+D+H fusion 5.5 MeV .
- Coulomb Barriers:

Cs + ${ }^{3} \mathrm{He}: 15.7 \mathrm{MeV}$
$\mathrm{Pd}+{ }^{3} \mathrm{He}: 14.1 \mathrm{MeV}$

- Small reaction is predicted by 16.7 MeV ${ }^{3} \mathrm{He}$ during its slowing down,
- and nothing by $5.5 \mathrm{MeV}{ }^{3} \mathrm{He}$.

${ }^{3}$ He for Stable Nuclear Fuel

- Stable Resource to produce Tritium: ${ }^{3} \mathrm{He}+\mathrm{n} \rightarrow \mathrm{p}+\mathrm{t}+0.765 \mathrm{MeV}$: in fission reactor or spallation source. Easy to extract T from gas-phase.
Tritium decays with 12.3 yrs half life.
For DT reactors and H-bomb.
(neutron detector)
- Fuel for D-3He reactors.

Conclusions

- H should be contained with some amount in usual CMNS deuterium-experiment.
- EQPET model was applied to 4-body fusion of mixed H/D TSC-system.
- ${ }^{3} \mathrm{He} /{ }^{4} \mathrm{He}$ production ratio was 0.16 for 50% H-contamination.
- ${ }^{3} \mathrm{He}$ is useful nuclear fuel.
- Formation of TSC is Key!
- Possibility of direct nuclear reaction for M+TSC. (Further study is expected.)

