Pd Complex

Transmutation of Cs into Pr

Transmutation of Sr into Mo

Transmutation of Ba into Sm

Isotopic Anomaly of the Detected Mo

Evaluation of D₂ Gas Flow Rate

Identification of Pr by TOF-SIMS(2)

TOF-SIMS device (TRIFTTMII;ULVAC-PHI)

ADVANCED TECHNOLOGY RESEARCH CENTER

Mass Number

Transmutation of Tm into Ta

Element Addition (1: Electrolyte Additions) State of the sector of the s

Element Addition (2: Ion Implantation) TUBISHI HEAVY INDUSTRIES

Identification of Pr by XANES

XANES(X-ray Absorption Near Edge Structure) HEAVY INDUSTRIES, I

BL-9A Line, KEK, Tsukuba, Japan

Identification of Pr by ICP-MS

Mass Number

Preparation of the Pd Complex

Procedure of an Experiment

Transmutation of Sr into Mo

Excess Energy and Q-value

MITSUBISHI HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER

 $^{133}_{55}Cs + 4d \rightarrow ^{141}_{59}Pr + (\gamma, phonon, e^-?)$ $Q \approx 50.5 MeV$ Experimental results $Pr \approx 10^{14} atoms$ EXH = 800Jreaction time $\approx 100h$ $P_{FXH} \approx 2.2 mW$

→Undetectable in our experimental setup

Depth Profile of Cs and Pr : Ion Implantation

Surface Distribution of Cs and Pr : Ion Implantation

Sample:Cs⁺ Ion Implantation Analysis:Tof-SIMS(ULVAC fai)

Depth Profile of Cs and Pr : Electrolyte Addition

Ultra Low Energy Beam Model

Rough Estimation of the Cross Section

$$\begin{aligned} \gamma &= \sigma \cdot f \cdot FL \cdot T_{exp} / S \\ &= \sigma \cdot \frac{2 \times 6 \times 10^{23}}{22.4 \times 10^3 \times 60} \cdot FL \cdot 100 \times 3600 / 1.0 \\ &= \sigma [cm^2] \cdot FL [sccm] \cdot 3 \times 10^{23} [1 / cm^2 / sccm] \\ &\text{Experimental results} \to 0.3 = \sigma \cdot 3 \times 10^{23} \\ &\vdots \sigma \approx 1 \times 10^{-24} [cm^2] = 1 [barn] \end{aligned}$$

1

cf. $\sigma_c = 27.2$ barn: ¹³³*Cs* for thermal neutron

Separation of the Products and Contaminants(1)

1.Rare Earth Element : Pr

- a) D_2 gas :The purity > 99.6% most of the impurity is $H_2 \sim 0.4\% N_2, D_2O, O_2, CO_2, CO, HC < 10 \text{ ppm}$
- b) A Pd complex deposited with Cs Pr < detection limit (0.01 ppt) by ICP-Mass

If all of the Pr at 0.01ppt distributed in the Pd test piece gathered in the analyzed area,

Max contamination Pr~0.1ng

 \rightarrow Less than the detected Pr(10ng \sim 100ng)!

Separation of the Products and Contaminants(2) A MITSUBISHI HEAVY IN ADVANCED TECHNOLOGY RESEA

2. Anomalous Isotopic Composition: Mo

Detection of Pr and Mo cannot be explain by contamination.

Pr and Mo are the products of nuclear transmutation reactions.

Surface Distribution of Cs and Pr : Electrolyte Additionsubishi HEAVY INDUSTRI

Sample:Cs is added using electrochemical method Analysis:Tof-SIMS(ULVAC fai)

Cs

Pr

Results from the depth profile and the surface distribution analyses

- Transmutation occurs in the thin surface region up to 100 angstrom.
 →Correlated with D/Pd?
 - →Important to surface analysis
- The surface distribution of Pr basically seems to be uniform. There is no correlation between Pr and grain boundaries. However, in the case of electrolyte addition, slight non uniformity of Pr was found.
 - →Migration of Pr ?
 - →Due to non uniformity of Cs addition?

試料ステージ概観

Identification of Pr by TOF-SIMS(2)

A MITSUBISHI HEAVY INDUSTRIES, LTD.

Quantitative Analysis of Pr by ICP-MS

MITSUBISHI HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER

Step1 : Solve the surface of the Pd Complex by nitric acid (The nitric acid is Ultra high purity; impurity Ni,Pb~50ppt

Step2 : Quantitative Analysis of the solution by ICP-MS

ICP-MS(Inductively Coupled Plasma Mass Spectrometry)

High Sensitivity: Detection Limit ~ Pr 0.1ng

Necessary to exclude Molecular Ions

Device : SEIKO Instruments: SPQ9000

Examination of Molecular Ions

MITSUBISHI HEAVY INDUSTRIES, LTD ADVANCED TECHNOLOGY RESEARCH CENTER

Pd	Pd(NO)	PdO_2
102(1%)	132	134
104 (11%)	134	136
105 (22%)	135	137
106 (27%)	136	138
108 (26%)	138	140
110 (12%)	140	142

No molecular ions interfering Mass 141(Pr) in this system

No D₂ Gas Permeation

MITSUBISHI HEAVY INDUSTRIES, LTD. ADVANCED TECHNOLOGY RESEARCH CENTER

→ <u>Prは検出されず。</u>

F.G.Data(1)

F.G.Data(2)

Analysis of the Standard Solution

Mass Number

Transmutation Dependence on the Element Addition Method HI HEAVY INDUSTRIES.

Conjecture on D distribution in the Pd Complex ADVANCED TECHNICLOGY RESEAR

Cross Sectional View

Passage of D₂ Gas

Change of XPS Spectrum of Cs

Change of XPS Spectrum of Pr

Time Variation in number of Cs and Pr atoms in the case of D₂ Permeation through thin film and bulk Pd with added Cs

XPS Spectrum of Cs (No CaO)

XPS Spectrum of Pr (No CaO)

Time Variation in number of Cs and Pr atoms in the case of H₂ Permeation through Pd Complex with added Cs

XPS Spectrum of Cs(H₂ Permeation)

XPS Spectrum of Pr (H₂ Permeation)

Average Permeation Rate and Products

Total Permeated D2 Gas and Conversion Rate A MITSUBISHI HEAVY

Total Permeated D2 Gas and Products

Change of XPS Spectrum of Sr

Change of XPS Spectrum of Mo

Time Variation in number of Sr and Mo atoms in the case of D₂ Permeation through thin film and bulk Pd with added Sr

XPS Spectrum of Sr (No CaO)

XPS Spectrum of Mo (No CaO)

DVANCED TECHNOLOGY RESEARCH CENTER

Pd/Pd/D2 Mo3d_{5/2} Mo3d_{3/2} 18 t=0 t=149h 17 t=294h Counts (cps) 16 15 1413 225 230 235 240 245 210215 220 Binding Energy (eV)

Time Variation in number of Sr and Mo atoms in the case of H₂ Permeation through Pd Complex with added Sr

XPS Spectrum of Sr (H2Permeation)

XPS Spectrum of Mo (H₂ Permeation)

Separation of the Products and Contaminants(3) A MITSUBISHI HEAVY INDER

<u>3. Variation of Detected Elements depending</u> <u>on the given Elements</u> $Cs \rightarrow Pr, Sr \rightarrow Mo$ $Li \rightarrow Al, C \rightarrow S, Si$

If the detected elements were contaminants, was it possible that the detected elements changed depending on the given elements?

The other observations

 $^{12}_{6}C \rightarrow ^{24}_{12}Mg \rightarrow ^{28}_{14}Si$

 $^{12}_{6}C \rightarrow ^{24}_{12}Mg \rightarrow ^{32}_{16}S$

 $_{3}^{7}Li \rightarrow _{9}^{19}F \rightarrow _{11}^{23}Na \rightarrow _{13}^{27}Al$

Necessary Conditions

ADVANCED TECHNOLOGY RESEARCH CENTER

Necessary Conditions to Induce Low Energy Nuclear Reactions

- **1. Enough Deuterium Flux**
- 2. Sufficient D on the Pd surface
- **3. Existence of a third element except Pd and D**

