EXCESS HEAT IN ELECTROLYSIS EXPERIMENTS AT ENERGETICS TECHNOLOGIES

I. Dardik, T. Zilov, H. Branover, <u>A. El-Boher</u>, E. Greenspan, B. Khachatorov, V. Krakov, S. Lesin, and M. Tsirlin

Energetics Technologies Ltd.

Omer, Israel lesin@energetics.co.il

Presented at the 11th International Conference on Cold Fusion, ICCF-11 Marseilles, France November 1 - 6, 2004

CONTENTS

- 1. Presentation objective
- 2. SuperWaves[©] used for driving the cell
- 3. Review of glow discharge experiments
- 4. Description of ET electrolytic cells
- 5. Pd Cathode and its pretreatment
- 6. Excess heat obtained
- 7. Excess tritium
- 8. Material analysis

PRESENTATION OBJECTIVES

- **1. Review of SuperWave[©] principles**
- 2. Review of Glow Discharge Experiments
- **3. Description of 3 ET electrolytic cell experiments** that resulted in significant excess heat generation:

Experiment #	56	64a	64b
Cycle №	4	1	2
Loading time (s)	80	5	16
Excess heat (EH) (%)	80	2500	1500
Duration of EH (h)	300	17	80
Excess energy (EE) (MJ)	3.1	1.1	4.6
Specific* EH (W/g Pd)	11	71	62
Specific* EE (KeV/Pd atom)	13.5	4.8	20 (24.8)

* - pertaining to effective part of cathode (6 x 0.7 cm)

EC are driving by SuperWaves

SuperWaves formation principles

 $\mathbf{F}_0(t) = A_0 \sin^2(\omega_0 \mathbf{t})$

 $F_1(t) = A_0 \sin^2(\omega_0 t)(1 + A_1 \sin^2(\omega_1 t))$

Glow Discharge Cell

8

Cell Assembly

Experimental Results with thin Palladium film (about 1 μm) on Stainless Steel Body

Maximum Excess Power = 3.7 x Input Power Total Excess Energy = 6.7 x Input Energy

Experimental Results with thick Palladium foil (100 µm)

Maximum Excess Power = 0.8 x Input Power Total Excess Energy = 0.8 x Input Energy

Excess Heat Generation during 20 days

Excess Energy during 20 days

"Heat After Death"

ET Electrolytic Cell

0.1M LiOD in low tritium content D_2O (230 ml)

EC is inside a Teflon beaker that is placed inside an isoperibolic calorimeter

Electrolytic Cell

Three cells are immersed in a constant temperature water bath of $+2.5^{\circ}C \pm 0.25^{\circ}C$

Cathode & Pre-treatment

• 50 μ m Pd foil, prepared by

Dr. Vittorio Violante (ENEA Frascatti, Italy)

- Annealed at 870°C in vacuum for 1h
- Etched:
 - in Nitric Acid 65-67%; 1 min
 - in Aqua Regia 1:1 water solution; 1 min
- Rinsed:
 - D_2O four times
 - Ethanol 95% twice
 - Ethanol Absolute once
- Dried:

in vacuum at ambient temperature for 24 h

Typical Calibration Curve for Electrolytic Cell Calorimeter

Block diagram

2nd level of modulation

parameters

1.

Of-line RR₀ versus time for Foil N⁰56 (Dr.Violante)

Of-line RR₀ versus time for Foil N⁰56 (Dr.Violante)

24

3.

Of-line RR₀ versus time for Foil N⁰56 (Dr.Violante)

25

Foil N⁰56 (Dr.Violante)

Foil N⁰51 (Dr.Violante)

Excess Power; Exp. # 56

Excess Power of up to ~3.5 watts; Average ~2.7 watts for ~300 h 28

Excess Energy; Exp. # 56

Excess energy of ~3.1 MJ

Excess Power; Exp. # 64a

Excess Power of up to 34 watts; Average ~20 watts for 17 h

Excess Energy; Exp. # 64a

Excess energy of ~1.1 MJ

Temperature Evolution, Exp. # 64a

Current & Voltage; EXP. # 64a

R/Ro & Power; EXP. # 64a

Loading is relatively low (~0.8)

Excess Power; Exp. # 64b

Excess Power of up to 32 watts; Average ~12 watts for 80 h

Excess Energy; Exp. # 64b

Excess energy of ~4.6 MJ

Temperature Evolution, Exp. # 64b

ΔT, Current Density & Voltage ; EXP. # 64b

R/Ro & Power; Exp. # 64b

Loading relatively low (~0.8)

Excess Tritium in # 64

- Tritium concentration measured at end of #64 analysis ~ 250% of reference
- ~625 cm³ of D_2O has been added to make-up for evaporation; initial inventory was 230 cm³
- Assuming TDO/D₂O evaporation rate ~ 1.0
- Estimated T effective concentration ~ 750%

• This amount of tritium corresponds to <1J – negligible as compared with the 5.7MJ excess energy generated.

Material Analysis

Diagnostics:

- Auger Electron Spectrometry
- Scanning Electron Microscopy-Energy Dispersive Spectrometry SEM-EDS
- Transmission Electron Microscopy (TEM)
- Secondary Ion Mass Spectrometry (SIMS)

Material Analysis # 64 vs. 63; SEM-EDS

Surface of Pd foil after rolling and annealing at 870°C:

sample #64

sample #63

View of Typical Black Spot on # 64 and its composition

-	P			1
1.			120	
{			the second	
T.			1-	E
	NE.	<u>M</u>	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
i.	f.		T E	
/22/04 HV M	lag Det Sig HF	W		

SEM-EDS

Element	Wt %	At %
C	35.77	52.48
0	26.19	28.84
Na	4.92	3.77
Al	0.43	0.28
Si	1.05	0.66
Pt	0.39	0.04
S	1.44	0.79
Cl	10.68	5.31
Pd	2.55	0.42
Κ	11.07	4.99
Ca	5.52	2.43
Total	100.00	100.00

AES profiles of Pd, C, O and Cl of Pd foils #63 and # 64

After etching in Aqua Regia

Sample 64. SIMS depth profiling.

45

Spatial distribution of selected isotopes measured by SIMS in #64 a – D, b - ³²S, c - total isotopes content, d - ¹⁹⁵Pt. Scale bar - 30 µm.

d

The dislocations in Pd foils after annealing.

TEM

Plastic deformation of Pd foil caused by D2 absorption. Planes of sliding (111) are visible. Sample #64

The area that is shown in the previous picture by an arrow.

Sample #56

Contact area

Working area

Brittle destruction of Pt Wire Sample #64

Summary of Material Analysis

- Pd surface is covered at least with two types of impurities. The first one is a lubricant used at a rolling process with Pd during plastic deformation of the metal. The second one is a result of adsorption of air components by Pd surface.
- The lubricant stains are of various sizes and configurations and present on surface of all samples before and after the electrolysis.
- Annealing at 850^o does not fully remove the lubricant's components from Pd surface.
- The density of dislocations and the average size of grains in sample # 64 are twice higher, than in the reference sample.
- Nuclear reaction product can not be detected on surface zone due to high concentration of impurities. No He measurement has been attempted.

SUMMARY

- Significant amount of excess heat has been generated in 3 experiments using 2 Pd foils.
- Dardik's modified SuperWaves have been used for current drive in all the three experiments.
- The average current density was relatively low: < **10 mA/cm²**
- The maximum excess power was **2500%**. This range of excess power is suitable for commercial applications (although the operating temperatures were too low for such applications).
- The maximum excess energy generated with a single Pd foil is **5.7 MJ**.
- This corresponds to a specific energy of **24.8 KeV per Pd atom.**
- The highest average power density obtained is ~70 W/g Pd (versus 20 to 50 W/g U in commercial fission reactors).

SUMMARY (cont.)

- Significant increase in the tritium concentration in the electrolyte has been observed. However, the amount of tritium produced is negligible as compared with the excess energy generated.
- No measurement of He has been attempted.
- The Pd cathode surface was contaminated by what appears to be lubricant from the roller used for pre-treatment as well as impurities adsorbed from the air.