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Introduction

Studies of metal deuterides indicate the
existence of new physical effects: 

•Low-level dd-fusion
•Fast alpha emission
•Kasagi d+d+d reaction
•Excess heat
•Helium
•Tritium



Fundamental issues

Why should there be any new effects?

How can deuterons come together?

Is it possible for reaction energy to be 
expressed as lattice energy?

Do there exist new reaction mechanisms in a 
lattice that can compete with vacuum d+d 
reactions?



Theory effort
Theory pursued since 1989:

•Was not obvious where to start
•Was not clear which effects real
•Theory in field viewed as impossible
•Assessment of roughly 150 different approaches, 

models, and variants
•Edisonian approach initially – sought to 

learn lessons from failed schemes

No consensus in field on theory – this presentation 
focuses on one approach to the problem



Maximization of Overlap

Models based on d+d reactions need for 
deuterons to get together, so we need to
understand what maximizes overlap
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We studied this problem using a simple 
two deuteron model based on:



Conclusion

Deuterons at
adjacent sites Double occupancy

Tunneling from one site 
to another is hindered

Tunneling is like D2
but probability of double

occupancy is low



Pd lattice structure (fcc)



PdD lattice structure (fcc)



Double occupation



Connection with experiment

Double occupancy appears to be maximized
under conditions favorable for anomalies:

•High loading: D/Pd ratio near or over unity
•Defects [single host metal atom vacancies]
•Elevated temperature:

/  E kT
xsP e−Δ

where ΔE observed to be 670 meV by Storms, which
is near the energy associated with double occupancy



Thermodynamics - bulk
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Vacancies in host lattice
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PdD Host lattice vacancy

Deuterium atoms relax toward host vacancy



Thermodynamics - vacancies

Unoccupied

Single 
deuteron

Two
deuterons

0 meV

-80 meV

450 meV

( 2 ) /

( ) / ( 2 ) /1

kT
DD

kT kT
D DD

g ep
g e g e

ε μ

ε μ ε μ

− −

− − − −=
+ +

D/Pd
0.2 0.4 0.6 0.8

T 
(K

)

200

250

300

350

400

450

500

10-5

10-6

10-7

10-7

10-8

10-8

10-9

10-9

10-10

10-10



Increase in Occupation
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Inclusion of Lattice in 
the Nuclear Problem

Since the 1930s, physicists have considered reactions 
between nuclei to occur the same in solids as would 
be expected in vacuum

deuteron
Metal deuteride

What happens if we include the lattice in the 
problem at the outset?



Resonating Group Method

The premise of the method is that the internal nuclear states 
are fixed, and the separation is described using channel factors Fj

The optimization of the channel separation factors leads to 
coupled-channel equations:

See J. A. Wheeler, Phys. Rev. 52, 1107 (1937).

Early efforts at modeling fusion reactions were 
based on the resonating group method 

  T jj
j

Fψ = Φ∑

ˆ ˆ    j j kj j j k
k j

FE H H EF F
≠

= Φ Φ + Φ − Φ∑



Now Include the Lattice

The optimization of the lattice channel separation factors leads
to new coupled-channel equations:

P. L. Hagelstein, ``A unified model for anomalies in metal deuterides,'' 
Proceedings of the ICCF8, Lerici (La Spezia), Italy, May 2000;  p. 363.

Generalize the resonating group method to include
lattice effects

  jT j
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ψ = Φ Ψ∑
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j jE H H E
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= Φ Φ +Ψ Φ − ΦΨ Ψ∑
New formulation now includes lattice effects on equal footing
with nuclear problem



Implications

Lattice resonating group method includes
phonon exchange in reaction description

•Vacuum reaction physics included as subset
•Angular momentum exchange with phonon

exchange predicted
•Modification of vacuum selection rules
•New site-other-site processes



Site-other-site processes

Oscillator

(d+d)a

( 4He )a ( APd )b

(A-4Ru + 4He)b

(Phonon mode)

Early proposal for mechanism for fast alpha emission
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In space…

Fusion at 
one site,
with phonon
exchange

Phonon-
induced 
disintegration
at another 
site



Second-order disintegration

Oscillator

(d+d)a

( 4He )a ( APd )b

(A-4Ru* + 4He)b

(Phonon mode)

( APd *)b

(A-1Rh* + p)b

(A-1Pd* + n)b

Second-order disintegration in this case probably 
works more like photodisintegration



Alpha spectrum from Pd
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Discussion

New mechanism for alphas from PdD

Predict fast alphas and protons from TiD

Expect neutrons with exponential distribution
Second-order reaction model gives rate 
orders of magnitude too small, so we know 
that mechanism is more complicated



Ti p, α
 

ejection energies
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Absence of Protons

Conjecture that angular momentum
exchange with phonons leads to suppression 
of the proton channel



Fastest site-other-site process

Oscillator

If site-other-site reactions can occur, then
what is fastest possible reaction of this
class?

Oscillator

Coupling to continuum Coupling to discrete state



Null reaction

Oscillator

(d+d)a

( 4He )a

(d+d)b

( 4He )b

(Phonon mode)

Early proposal for null reaction mechanism



Null Reaction -- Observable?

For years after proposing the null reaction, we 
wondered whether there was any possibility of 
observing it – this was considered unlikely, since the 
initial state and final state products seemed to be the 
same, only exchanged in position

After analyzing the scheme, we understood that two 
deuterons created from helium dissociation as part of 
a site-other-site reaction would have trouble 
tunneling apart, and hence might be observable in a 
collision experiment



Schematic of measurement

10 fm



The Kasagi Experiment

deuterons
at 70 KeV

protons up to
21 MeV

4He up to about
6.5 Mev

p+t
n+3He

TiDx



Proton signals

Kasagi saw dd-fusion products; 
also fast protons and alphas 
from direct d+3He and from 
secondary 3He+d reactions

A proton signal between 8 and 
12 MeV was not accounted 
for; and a similar alpha signal 
below about 7 MeV

J. Kasagi et al, J. Phys. Soc. Japan 64, 777 (1995).



Schematic of proton spectrum
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Discussion

Kasagi experiment interpreted as:

d + (d+d)compact n + p + 4He

•Where are d+4He and t+3He channel products?
•Data consistent with 10-6 of deuterons in 

compact states
•How can compact states be so stable?



Angular momentum
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Stabilization of compact states

20 units or more of angular momentum stabilizes 
compact states
Two-body exit channels suppressed if large angular 
momentum present
Phonon exchange capable of large angular 
momentum exchange



Phonon interactions

General model is complicated, so we need to 
Simplify – propose reduced models to study

•Only get effects when phonon exchange nonlinear
•Assume one phonon mode highly excited
•All other modes thermal
•Focus on two-site problem to see how it works
•Use simplified nuclear description initially



Position operators

ˆˆ  =  m
mj mj q⎡ ⎤

⎢ ⎥
⎣ ⎦∑ uR

Can express the position operator in terms of phonon 
mode amplitudes

Position operator is local: ˆ
jR

Phonon mode is nonlocal: ˆmq

How to model with strong (delocal phonon mode) 
and strong nuclear short range interaction?



Hybrid description
Separation of lattice and nuclear degrees of freedom
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Define residual position operator:

Leads to hybrid description:

ˆ = [ ]  + ˆ R̂ jmj j m qR u



Discussion

Separation of local and nonlocal degrees of 
freedom
Hybrid description allows direct computation 
of phonon exchange
Results for scalar Gaussian nuclear models
Work in progress on better nuclear models
Duschinsky mechanism for phonon and 
angular momentum exchange



Simplified Nuclear Interaction

Assume variational Gaussian wavefunctions 
and potential
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Nuclear interaction
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Nuclear interaction in terms of 
phonon operators
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WKB approximation:

P. L. Hagelstein, ``Anomalies in metal deuterides,’’ Proc. ICCF9 (2002)



Phonon exchange
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Thinking about results

Approach allows for systematic calculation 
of phonon exchange
If two deuterons are close together, they 
look like 4He to lattice
Hard to exchange phonons if initial and 
final states look so similar
Need initial and final states to behave 
differently if we want to exchange 20 or 
more phonons



Duschinsky in simple terms

4He 3He
n 3He n

4He in 
initial state

3He +n in 
final state

3He looks different to 
the lattice and 

accelerates

Duschinsky mechanism can produce phonon and angular 
momentum exchange



Two site problem
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P. L. Hagelstein, Proc. ICCF9 (2001)



Coupled-channel equations
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Analyze with unstable states
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Unstable basis model 
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Molecular state
Compact states



SU(3) model 

4He

d+d

n+3He

Molecular state
Compact state



Coupled phonon SU(3) model
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Quantum flow calculation

0E H VΨ= Ψ+ Ψ

Start with model Hamiltonian

1 2 3Ψ=Ψ +Ψ +Ψ

Divide into 3 Hilbert space sectors:
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P. L. Hagelstein, ``Anomalies in metal deuterides,’’ Proc ICCF9 (2002)



Quantum flow calculation

Molecular D2
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Compact

states
Decay 
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Quantum flow calculation
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Quantum flow calculation
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Quantum flow calculation
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Coupling between nuclear and 
phononic degrees of freedom
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Nuclear and phonon energy 
exchange

n - n0

-1000 -500 0 500 1000

M
 - 

M
0

-20

-15

-10

-5

0

5

10

15Treat ratio of

0/E ωΔ h

as a free parameter,
and study transfer of
nuclear energy to phonon
energy



Acceleration of Dynamics



Massive excitation transfer I

Molecular
state

4He

Compact
states

4He

Compact
n+3He

DD/4He system transferring to 4He/compact state system



Massive excitation transfer II

Molecular
state

4He

Compact
states

APd

Compact
n+A-1Pd

DD/4He system transferring to Pd/compact state system



Duschinsky for other cases

APd A-1Pd
n A-1Pd n

APd in 
initial state

A-1Pd +n in 
final state

A-1Pd looks different to
the lattice and 

accelerates

Duschinsky mechanism can produce phonon and angular 
momentum exchange for general nuclei in lattice



Coherent excitation transfer
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Reaction rate in a burst
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Connection with Experiment

2
max

1
2

GVe
π τ

−

=
Γh

Model predicts relation between tunneling parameters, 
pulse length and maximum reaction rate

For a 5 hour pulse with Γmax = 1012 sec-1, we get

443 10Ge− −= ×

This is close to the tunneling factor for D2



Coupled phonon SU(4) model
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Molecular state
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Molecular state



Coupled phonon SU(4) model
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Conclusions: I
Double occupancy maximizes dd overlap

Estimate of double occupancy in PdD
Lattice resonating group method includes lattice in nuclear 
problem

Proposal for new site-other-site reactions

Proposed new explanation for fast alphas
Proposal for new compact states

Proposed explanation for Kasagi experiment



Conclusions: II
Proposal for new phonon/nuclear models

Models appear to be relevant to heat effect, low-level dd-fusion 
effect, fast alpha emission, the Kasagi effect, and tritium

New mechanism proposed for energy exchange between nuclei 
and lattice

Accelerated tunneling mechanism proposed

Mechanism proposed for interaction with
host metal nuclei and other nuclei in lattice



Simplified picture

Assume that active
region is outer shell,
and that phonons are
produced by deuterium
flux across drop in
chemical potential



Seek consistent parameters
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