From: Steven Krivit

Sent: 30 November 2014 22:27

To: xxxx@ukaea.org.uk Subject: net fusion power

Hi Nick,

For JET's peak power production, which as I understand, generated 16MW fusion power for 24MW applied heating power input, can you tell me about how much total input electrical power was required to make the heating power of 24MW?

Thank you,

Steve Steven B. Krivit Publisher and Senior Editor, New Energy Times

From: "Holloway, Nick J" <@ccfe.ac.uk>

To: <xxx@newenergytimes.com> Subject: FW: net fusion power Originating-IP: [194.128.56.121]

Hi Steven,

We don't have the electrical power input figure for this pulse to hand unfortunately. Below is some information from my colleague Chris on JET's typical electrical power levels, so it will be of this order. But if you do need the exact input figure we can find out.

Best wishes,

Nick

Nick Holloway
Media Manager
Communications Group
Culham Centre for Fusion Energy
K2/1.14
Culham Science Centre

Abingdon
Oxfordshire OX14 3DB

W: www.ccfe.ac.uk E: xxxx@ccfe.ac.uk

Telephone: +44 (0)1235 466232

From: Warrick, Chris D

Sent: 01 December 2014 16:28

To: Holloway, Nick J

Subject: FW: net fusion power

The general answer is that a JET pulse typically requires ~700 MW of electrical power to run. The vast majority of this goes into feeding the copper magnetic coils and the rest into subsystems and energising the heating systems. In future machines, the copper coils will be replaced with superconducting coils – which will ensure the total input power is dramatically reduced.

I don't have to hand specific numbers for this particular pulse – these can be obtained if necessary ...

Chris

Bringing Fusion Down to Earth!

Chris Warrick
Communications Manager
Culham Centre for Fusion Energy
Culham Science Centre
ABINGDON
Oxfordshire
OX14 3DB

Tel: 01235 466647