There is no "waste-heat problem." The emitted particles don't "leak and drift." This is precisely how the fusion energy in tokamaks is designed to be captured. The neutrons emitted from the fusion reactions are intended to be absorbed by the walls of the reactor where their kinetic energy will be converted to heat.

"But ITER would generate electricity only in bursts of a few minutes." No it won't. Not for a millisecond. Thermal to electric conversion is not part of the ITER design. The heat (as explained above) will be captured by a water cooling system and vented through cooling towers.

Here's what ITER will do if all goes well. For periods of 400-seconds, the reactor will consume steady-state electrical power of a minimum of 300MW during peak fusion power output of 500MW thermal. ITER will thus demonstrate a reactor power amplification (electric-to-thermal) of 1.6 and a plasma power amplification (thermal-to-thermal) of 10.