The way to new, clean, safe and nearly unlimited energy Bernard BIGOT, Director-General, ITER Organization

Fusion on Earth

1 gram of fusion fuels = 8 tons of oil

- A plasma of Deuterium + Tritium (hydrogen isotopes)
 is heated to more than 150 million °C.
- The hot plasma is shaped and confined by strong magnetic fields.
- Helium nuclei sustain burning plasma.
- Neutrons transfer their energy to the Blanket .
- In a fusion power plant, conventional steam generator, turbine and alternator will transform the heat into electricity.

Fusion's advantages

- A new energy source of massive, predictable and potentially continuous or variable power complementary of the renewable energies
- Safe, environmentally responsible
- Almost limitless supply of fuel for hundreds of millions of years, widely distributed around the globe
- No CO2 or other greenhouse gases
- No long-lasting high-activity radioactive waste

The ITER Tokamak

Vacuum Vessel: ~ 8 000 t. TF Coils: ~ 18 x 360 t. Central solenoid: ~ 1 000 t.

Total ~ 23 000 t.

R=6.2 m, a=2.0 m, I_p=15 MA, B_T=5.3 T, 23,000 tonnes

3,5 times the weight of the Eiffel Tower!

Naval construction-size components...

Inside the Assembly Hall, giant tools will handle loads up to 1,500 tons

...watch-like precision

The integration challenge

Managing collaboration

Best technically achievable schedule: First Plasma 2025

A staged approach to full fussion power: 2035

Extensive interactions among IO and DAs to finalize revised baseline schedule proposal

- ✓ Schedule and resource estimates through First Plasma (2025) consistent with Members' budget constraints
- ✓ Proposed use of 4-stage approach through Deuterium-Tritium (2035) consistent with Members' financial and technical constraints

Tokamak Complex

Electrical conversion

Cooling water systems

Into the industrial phase with highly challenging specifications

Manufacturing of ITER components is taking place at the cutting edge of technology:

- Geometrical tolerances measured in millimetres for steel pieces up to 17 m tall weighing several hundred tons
- Superconducting power lines cooled to minus 270 degrees Celsius
- Plasma facing components to withstand heat flux as large as 20 MW per m²
- Cryoplant cooling capacity up to 110 kW at 4.5 K; maximum cumulated liquefaction rate of 12,300 litres/hr
- Etc.

Who manufactures what?

The ITER Members share all intellectual property

ITER Industry Days, Brussels, 4 December 201

Manufacturing progress Members committed and delivering

• Converter-transformers delivered • PF Coil # fabrication on-going

Assembly and welding of Cryostat

Assembly tests for NBE 1 MV bushing

• 4 out of 9 vessel sectors under construction

Full-scale tests of sealing flange mock-up

• 1,000-ton Central Solenoid fabrication on-going

Economic benefits

More than 8,5 billion euros in contracts for construction and fabrication

ITER is moving forward!

