Evidence for Anomalous Low Energy Nuclear Reactions

David J. Nagel
Research Professor
Department of Electrical and Computer Engineering
The George Washington University
202-994-5293
nagel@gwu.edu

Physics Department
University of Notre Dame
16 September 2005

New Energy Times Archives
Topics to be Covered

Reproducibility, Controllability & Optimization

Evidence for Nuclear Reactions

Evidence for Surface Reactions

Recent Theoretical Developments

New Energy Times Archives
Introduction to Reproducibility

The Scientific Method, including reproducibility within and between laboratories, has a large literature, much of it in the Philosophy of Science.

There are essentially two kinds of reproducibility:
- Different things are done, but the results are comparable.
- The same things are done, but sometimes the results vary.

The first is characteristic of old and understood technologies. The second is often the case in new fields when all the relevant variables are not understood or controlled.

There are many examples of the first type of reproducibility. LENR is now an example of the second type of reproducibility.
Examples of the First Type of Reproducibility: Getting the Same Results

ENERGY PRODUCTION: ELECTRICITY FROM OIL

OIL & OXYGEN → BURNER → TURBINE → GENERATOR → ELECTRICITY

Chemical Energy → Thermal Energy → Mechanical Energy → Electrical Energy

MATERIALS MODIFICATION: MAKING CHOCOLATE COOKIES

INGREDIENTS → MIXING → BAKING → COOKIES

THE RESULTS ARE REPRODUCIBLE, DESPITE MANY ACTUAL DIFFERENCES IN ALL OTHER ASPECTS OF THE PROCESSES. BOTH CASES ARE OLD AND WELL-UNDERSTOOD TECHNOLOGIES.
Examples of the Second Type of Reproducibility: Doing the Same Things

Five Fundamental Factors

Materials
The materials that actually participate in an experiment are critical to the outcome, and impurities may play a major role.

Apparatus
The equipment determines what is possible, and may contribute materials to the experiment.

Protocols
What is done and when it is done both determine the outcome of an experiment.

Experimenter(s)
The effects of the knowledge, skills and inclinations of the scientists performing an experiment range from central to subtle.

Organization
The organization within which an experiment is performed can have many impacts on the outcome.
The key question is how much variation in the five factors is tolerable in order to achieve either the same or similar results?
Materials

The bulk and surface compositions of electrodes and other structures involved in a LENR experiment are critical.

Possible Participation of Impurities

1 Watt = 1 J/sec. or about 10^{13} MeV/sec. If each nuclear reaction gives 1 MeV, need 10^{13} reactions/sec. 1 ppm is about 10^{17} Nuclei/cm3, so 0.1 cm$^3 =$ 10^{16} Nuclei. Hence, reactions of 10^{-3}/sec. of a 1 ppm impurity gives 1 Watt.

Possible Influence of Impurities on Structure

Crystal structure could be critical. It depends on many composition and processing variables.
Apparatus

CELL DESIGN: TYPE, OPEN or CLOSED,…
CALORIMETER: HEAT or MASS FLOW, CALIBRATION, …..
DETECTORS: TYPE, MINIMUM DETECTABLE LIMIT, …..

MANY CHOICES AND MOST OF THEM ARE IMPORTANT
Protocols

The ambient conditions, especially temperature, and the levels and time variations of applied voltages and currents, make up the experimental protocols chosen by the experimenter(s).

Dis-equilibrium has been shown to be important in many types of LENR experiments. Two examples are:

- Claytor et al

- Fleischmann et al

[Graphs showing temperature and tritium production over time]
Experimenter(s):
The key questions are (a) what knowledge and (b) which of the many requisite skills are possessed by the experimenter(s)?
Organization:
Inter-Personal Relationships, Money and Available Assistance are Each Important

Lone Researcher in Own Facility
Researchers in Large Organizations

Approval and Funding

New Energy Times Archives
Intra-Laboratory Reproducibility

M. H. Miles performed electrochemical experiments from which heat and helium were observed and usually correlated: Correlated Heat and He were observed in 18 of 21 runs. Neither were observed in 12 of 12 other runs.

S. Szpak and his colleagues performed co-deposition experiments for over a decade which exhibited “anomalous events virtually 100% of the time”, according to F. Gordon. The anomalies include heat, tritium and IR emissions.

Edmund Storms stated that “I can make heat with good success if I treat the sample in exactly the same way.” He has demonstrated tests of cathodes prior to a LENR experiment that will show if a particular cathode will not work.

New Energy Times Archives
Intra-Laboratory Reproducibility

<table>
<thead>
<tr>
<th>Electrolyte: T P Max. I: R/R° D/Pd (h) (W) %</th>
<th>Input Output-Input</th>
<th>Pd atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECL 5.0 0.7</td>
<td>none</td>
<td>7</td>
</tr>
<tr>
<td>*</td>
<td>LiOD 1.0</td>
<td>none</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.2 36</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.2 36</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.2 36</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.2 36</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.2 36</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.7 40</td>
<td>LiOD 0.1</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.7 40</td>
<td>Li2SO4 0.5</td>
</tr>
<tr>
<td>Engel. 4.5 0.3</td>
<td>4.7 40</td>
<td>Li2SO4 0.5</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 0.1</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
<tr>
<td>Engel. 3.0 0.3</td>
<td>2.8 24</td>
<td>LiOD 1.0</td>
</tr>
</tbody>
</table>
If appropriate conditions were achieved, excess heat resulted.

New Energy Times Archives
Intra-Laboratory Reproducibility: Krivit’s Reproducibility Survey at ICCF-10

<table>
<thead>
<tr>
<th>Researcher's Nationality</th>
<th>Field of Degree</th>
<th>Years of Cold Fusion Research</th>
<th>Years of Hot Fusion Research</th>
<th>Estimated Number of Experiments Performed</th>
<th>Reproducibility Rate 5 Years Ago</th>
<th>Reproducibility Rate Last 12 Months</th>
<th>Do You Conclude That Nuclear Activity is Occurring?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italy</td>
<td>Chem. Engr.</td>
<td>na</td>
<td>yes</td>
<td>na</td>
<td>na</td>
<td>50</td>
<td>na</td>
</tr>
<tr>
<td>Russia</td>
<td>Condensed Matter Physics</td>
<td>18</td>
<td>na</td>
<td>1,000</td>
<td>na</td>
<td>60</td>
<td>Yes</td>
</tr>
<tr>
<td>Italy</td>
<td>Physics</td>
<td>14</td>
<td>16</td>
<td>300</td>
<td>40</td>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>United States</td>
<td>Mass Communications</td>
<td>13</td>
<td>no</td>
<td>6,000</td>
<td>25</td>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>United States</td>
<td>Phys. Chem.</td>
<td>14</td>
<td>no</td>
<td>200</td>
<td>10</td>
<td>80</td>
<td>Yes</td>
</tr>
<tr>
<td>United States</td>
<td>Metallurgy</td>
<td>14</td>
<td>no</td>
<td>3,000</td>
<td>50</td>
<td>90</td>
<td>Na</td>
</tr>
<tr>
<td>Japan</td>
<td>Nucl. Engr.</td>
<td>14</td>
<td>20</td>
<td>20</td>
<td>70</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>Romania</td>
<td>Atomic Physics</td>
<td>10</td>
<td>no</td>
<td>40</td>
<td>70</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>United States</td>
<td>Radiochemistry</td>
<td>14</td>
<td>no</td>
<td>700</td>
<td>50</td>
<td>100</td>
<td>Yes</td>
</tr>
<tr>
<td>Russia</td>
<td>Nucl. Rocket Engr.</td>
<td>13</td>
<td>2</td>
<td>3,500</td>
<td>na</td>
<td>100</td>
<td>Yes</td>
</tr>
</tbody>
</table>

TOTAL ESTIMATED EXPERIMENTS: 14,720

AVERAGE REPORTED REPRODUCIBILITY

- **45%**
- **83%**

New Energy Times Archives
Inter-Laboratory Reproducibility

Excess Heat Depends on the Loading

\[P \sim (X - X_0)^2 \text{ where } X = D/Pd \]

McKubre et al

Kunimatsu et al

New Energy Times Archives
Inter-Laboratory Reproducibility

Excess Heat Depends on Current Density

\[P_{XS} \sim \left[\frac{A}{cm^2} - \left(\frac{A}{cm^2} \right)_0 \right] \]

New Energy Times Archives

Pons and Fleischmann

Kunimatsu et al
Inter-Laboratory Reproducibility at SRI International

<table>
<thead>
<tr>
<th>Experimenters (Year)</th>
<th>Nature of Experiment</th>
<th>Outcome @ SRI Int'l.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Miles and B. Bush (93)</td>
<td>EC Loading: D-Pd</td>
<td>Low levels of He observed</td>
</tr>
<tr>
<td>M. Srinivasan (94)</td>
<td>EC Loading: H-Ni</td>
<td>No excess power; chemical effect</td>
</tr>
<tr>
<td>J. Patterson & D. Cravens (95)</td>
<td>EC Loading: H/D-Ni</td>
<td>No excess power</td>
</tr>
<tr>
<td>R. Stringham & R. George (96)</td>
<td>Cavitation Loading: D-Metals</td>
<td>No excess power</td>
</tr>
<tr>
<td>X. Arata and X. Zhang (96-97)</td>
<td>EC DS Cathode: D-Pd</td>
<td>80% excess energy and He increase</td>
</tr>
<tr>
<td>F. Celani et al (98)</td>
<td>EC Loading Fine Wires</td>
<td>No excess power</td>
</tr>
<tr>
<td>R. Stringham (99)</td>
<td>Cavitation Loading: D-Metals</td>
<td>No excess power</td>
</tr>
<tr>
<td>L. Case (98-02)</td>
<td>Heat & Press: D2 + Pd catalyst</td>
<td>Correlated heat and He production</td>
</tr>
<tr>
<td>D. Letts & D. Cravens (03)</td>
<td>EC Loading + Laser Stimulation</td>
<td>28 W/cm³ & 25 kJ excess observed</td>
</tr>
</tbody>
</table>

The table shows that excess power and energy, sometimes with significant amounts of He, were produced in three of the nine replication attempts. The reasons for the failed replication attempts are not clear.
Controllability of LENR Experiments

For LENR to be a practical source of energy, the reactions must be controllable:

Imagine an automobile without these capabilities!!

Currently, there is even less information on controllability of LENR than on their reproducibility.
Optimization of LENR Experiments

For LENR to be an economical source of energy, the reactions almost certainly must be optimized.

The amount of power and energy produced per kilogram of system weight and liter of system volume must be high enough to breakeven over the costs of materials, and the costs of manufacture, sales and maintenance of the system.

Optimization is needed to (a) achieve economic breakeven and (b) maximize the profit margin.

Again, imagine an automobile that gets poor gas mileage.

Neither available parametric studies nor any of the current theories permit optimization of LENR.
Reproducibility, Controllability & Optimization

Summary

<table>
<thead>
<tr>
<th>Time in Years or Decades</th>
<th>Understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproducibility</td>
<td>No</td>
</tr>
<tr>
<td>Controllability</td>
<td>No</td>
</tr>
<tr>
<td>Optimization</td>
<td>No</td>
</tr>
<tr>
<td>Understanding Increases</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Currently, there is significant intra- and inter-laboratory reproducibility, little controllability and little optimization.

New Energy Times Archives
Evidence for Nuclear Reactions

Ordinary D-D Fusion (Beams or Plasmas)

\(^2H_2 + ^2H_2 \rightarrow \begin{cases} \text{n} + ^3\text{He} & +2.45 \text{ MeV (50\%)} \\ \text{p} + ^4\text{He} & +3.0 \text{ MeV (50\%)} \\ \gamma & 24 \text{ MeV (10^{-7})} \end{cases} \)

Ignition Temperature = \(400 \times 10^6 \, ^0\text{c} \)
(about 40 Kev)

New Energy Times Archives
Types of Nuclear Evidence

- Large Excess Heat
- Production of Helium
- Heat-Helium Correlation
- Production of Tritium
- Observations of Neutrons, X-Rays & Gamma-Rays
- Craters in Cathodes
- Hot Spots on Cathodes
- Observations of Unexpected Elements

New Energy Times Archives
Large Excess Heat

McKubre et al: 2076 eV per Pd atom
Arata & Zhang: ~20,000 eV per Pd atom

W/cm³

10⁵

10⁴

10³

10²

10¹

1

F & P Announcement

ICCF-3

F & P

ICCF-6

Preparata

2 kW/cm³

NUCLEAR REACTOR FUEL ROD POWER DENSITY

“Heat After Death”

New Energy Times Archives
Production of Helium

Catalyst + D2 Experiment - 4He via Mass Spec
50cc Stainless Steel Vessels at 50psig (3.4atm) D2
and 10 gms Pd/Carbon Catalyst at ~200°C

Active experiment showing 4He growth

- 5.22ppm 4He in Air
- ~1.5 ppm max 4He at 3.4 atm from atmospheric leak
- Controls showing helium at instrument background

New Energy Times Archives
Heat-Helium Correlation

\[y = 18.36x \]
\[R^2 = 0.99 \]

\[y = 18.89x \]
\[R^2 = 0.95 \]

Gradient Q = 31±13 MeV/atom

Differential Q = 32±13 MeV/atom

McKubre et al, SRI International

New Energy Times Archives
Production of Tritium

GOOD INSTRUMENTATION
TWO TECHNIQUES
TO MEASURE TRITIUM

BASELINE FOR SOME EXPERIMENTS
GOOD SIGNAL TO NOISE
RESPONSE TO VARIATIONS

CLAYTOR ET AL @ LOS ALAMOS
New Energy Times Archives
Observations of Neutrons and X-Rays

Low rates of statistically-valid neutron emission have been observed in many “cold fusion” experiments.

The neutron emission rates are very much lower that expected for the excess powers observed.

X-ray emission has been measured at relatively low levels in many “cold fusion” experiments.

In both cases, reproducibility is generally poor, but neither neutrons nor x-rays will result from chemistry.

New Energy Times Archives
Observations of Gamma-Rays

Kevin Wolfe--Texas A & M University

STRONG GAMMA-RAY LINES WITH EXCELLENT SIGNAL-TO-NOISE PEAKS OCCUR PRECISELY AT EARLIER TABULATED VALUES OF LINES FROM ISOTOPES OF Ru, Rh, Pd AND Ag!
Craters in Cathodes

Chemical energies are insufficient to cause the craters that have been observed on cathode surfaces in many “cold fusion” experiments.

New Energy Times Archives
Hot Spots on Cathodes

S. Szpak, P. A. Mosier-Boss, J. Dea and F. Gordon
SPAWAR Systems Center (ICCF-10 in 2003)

Release of 1 Mev in a cube of Pd 100 nm on a side gives a temperature (T) rise of
$\Delta T = 380 \text{ K}$ using $3 \, k \, \Delta T/2$ as the increase in vibrational energy, or
$\Delta T = 55 \text{ K}$ using the specific heat for Pd = 26 J/K mole

New Energy Times Archives
Observations of Unexpected Elements

Labs Reporting Transmutation Results
(Compilation by Miley)

Hokkaido Univ., Japan - Mizuno et al.; Notoya et al.
Mitsubishi Corporation, Japan - Iwamura et al.
Osaka University, Japan - Takahashi et al; Arata et al.
University of Lecce, Italy - Vincenzo et al.
Frascati Laboratory, Italy – De Ninno et al.
SIA “LUTCH”, Russia - Karabut et al; Savvatimova et al
Tomsk Polytechnical Univ., Russia - Chernov et al.
Lab. des Sciences Nucleaires, France - Dufour et al.
Beijing University, China - Jiang et al.
Tsinghua University, China - Li et al.
University of Illinois, USA - Miley et al.
Portland State University, USA – Dash et al.
Texas A&M University, USA - Bockris et al.
Schizuoka University, Japan – Kozima et al.
Iwate University, Japan – Yamada et al.

Ca, Al, Si, Mg and Zn not uniformly distributed

S. Szpak et al
SPAWAR Systems Center

New Energy Times Archives
Conclusion

The anomalous effects seen in “cold fusion” experiments involve nuclear reactions, hence, LENR

Theory

The new (2 May 2005) paper by Widom and Larsen offers a multi-step scenario for LENR that does not require distributed nuclear wave functions, and has no problem with Coulomb barriers. It does not require “new physics”, and may explain the low neutron emission.
Ultra Low Momentum Neutron Catalyzed Nuclear Reactions on Metallic Hydride Surfaces

A. Widom
Physic Department, Northeastern University, 110 Forsyth Street, Boston MA 02115

L. Larsen
Lattice Energy LLC, 175 North Harbor Drive, Chicago IL 60601

Ultra low momentum neutron catalyzed nuclear reactions in metallic hydride system surfaces are discussed. Weak interaction catalysis initially occurs when neutrons (along with neutrinos) are produced from the protons which capture “heavy” electrons. Surface electron masses are shifted upwards by localized condensed matter electromagnetic fields. Condensed matter quantum electrodynamic processes may also shift the densities of final states allowing an appreciable production of extremely low momentum neutrons which are thereby efficiently absorbed by nearby nuclei. No Coulomb barriers exist for the weak interaction neutron production or other resulting catalytic processes.

The sources of the electron mass renormalization via electromagnetic field fluctuations on metallic hydride surfaces and the resulting neutron production are the main subject matters of this work.
Multi-Step Process

1. H or D at surface of Pd vibrate with large excursions

2. The moving H or D interact with surface plasmons to create strong electromagnetic fields

3. The EM fields increase the mass ("dress") electrons

4. Heavy electrons and H (or D) react via the weak interaction, producing low-momenta (very slow) neutron(s)

5. Neutrons react with elements in the experiment.

The two nuclear reactions in steps #4 and 5 do not have "Coulomb barrier" problems. They occur within nuclear dimensions, and do not require nuclear wave functions to be distributed in the lattice.
Requirements for Each Step

INPUTS

LOCAL CONDITIONS in (XYZ & t)

OUTPUTS

REACTANTS

PRODUCTS

What are the inputs?

What are the outputs?

What mechanism is involved?

What is the rate of conversion of inputs to outputs?

How do the rates depend on the relevant conditions, such as temperature?

New Energy Times Archives
1. H or D at surface of Pd vibrate with large excursions

High loading insures H/D population of the surface layer. Vibrations are thermally driven and temperature dependent.
2. The moving H or D interact with surface plasmons to create strong electromagnetic fields.
Enhancing the surface plasmon density will increase the electromagnetic field strength.

$$\mathcal{E} \approx 1.4 \times 10^{11} \text{ volts/meter} \ (\text{Hydrogen Monolayer}).$$

$$\sqrt{|E|^2} \approx 6.86 \times 10^{11} (\text{volts/meter}) \sqrt{\frac{|u|^2}{a^2}}.$$

$$\sqrt{\frac{|u|^2}{a^2}} \approx 4.2 \ (\text{Hydrogen Monolayer}).$$

from neutron scattering data at room temperature

Enhancing the surface plasmon density will increase the electromagnetic field strength.

This may be the basis of increases in excess heat that are observed when a Pd cathode is irradiated with a laser.
3. The EM fields increase the mass ("dress")

\[\tilde{M}_e^2 c^2 = M_e^2 c^2 + \left(\frac{e}{c} \right)^2 A^\mu A_\mu \]

A is the vector potential, the derivative of which gives the electromagnetic field strength

\[\beta \equiv \frac{\tilde{M}_e}{M_e} = \left[1 + \left(\frac{e}{M_e c^2} \right)^2 A^\mu A_\mu \right]^{1/2} \]

The breakdown[12] of the conventional Born-Oppenheimer approximation for the surface hydrogen atoms contributes to the large magnitude of electromagnetic fluctuations.

Need a field strength vs mass curve.
4. Heavy electrons (leptons denoted l) and H (or D) react via the weak interaction, producing low momenta (very slow) neutron(s)

\[l^- + p^+ \rightarrow n + \nu_l. \]

Coulomb attraction.

Need to satisfy energy (mass) conservation:

For H, the required mass enhancement is

\[M_l c^2 > M_n c^2 - M_p c^2 \approx 1.293 \text{ MeV} \approx 2.531 \text{ MeV}, \]

For D, the required mass enhancement is

\[\frac{\tilde{M}_e'}{M_e} = \beta'(D \rightarrow n + n + \nu_e) > 6.88. \]

Note: The reaction with a deuteron makes two neutrons.

Using neutron scattering data, \(\beta = 20.6 \) for H and D, so the electron mass thresholds for reactions with either H and D are exceeded.
5. The new and slow neutrons react with elements in the experiment

Lithium can be a reactant:
\[
\begin{align*}
\frac{6}{3}Li + n & \rightarrow \frac{7}{3}Li, \\
\frac{7}{3}Li + n & \rightarrow \frac{8}{3}Li, \\
\frac{8}{3}Li & \rightarrow \frac{8}{4}Be + e^- + \bar{\nu}_e, \\
\frac{8}{4}Be & \rightarrow \frac{4}{2}He + \frac{4}{2}He.
\end{align*}
\]

There is no Coulomb barrier, and this is not D-D fusion

\[
Q\left\{ \frac{6}{3}Li + 2n \rightarrow 2 \frac{4}{2}He + e^- + \bar{\nu}_e \right\} \approx 26.9 \text{ MeV.}
\]

\[
Q\left\{ \frac{6}{3}Li + n \rightarrow \frac{4}{2}He + \frac{3}{2}He + e^- + \bar{\nu}_e \right\} \approx 4.29 \text{ MeV.}
\]

The amounts of excess heat per He produced, and the ratio of He-3 to He-4, both depend on the relative rates of different nuclear reactions.
Widom & Larsen indicate that their theory might be able to explain the transmutation results of Iwamura et al. @ MHI in Japan.

In this regard, ultra low momentum neutrons may produce “neutron rich” nuclei in substantial quantities. These neutrons can yield interesting reaction sequences[17].

Can the theory of Widom & Larsen explain the observations of Wolf (assuming their validity)?

Strong gamma-ray lines with excellent signal-to-noise. Peaks occur precisely at earlier tabulated values of lines from isotopes of Ru, Rh, Pd and Ag!

New Energy Times Archives
Other Challenges to the Widom & Larsen Theory from Past Experiments.

Why do H and D produce very different results for Pd cathodes?

Since the theory says that production of excess heat is a near-surface phenomenon, how does excess heat correlate with the area of Pd cathodes in experiments?

Can the theory explain the loading threshold for D and Pd, which is near D/Pd = 0.9, and the quadratic variation of heat production with loading above the threshold?

Can the theory explain current density thresholds, which fall in the range of 100 to 500 mA/cm²?

Is the often-observed need for dis-equilibrium to produce excess heat explicable by enhancement of surface plasmons?
Absorption of Nuclear Gamma Radiation by Heavy Electrons on Metallic Hydride Surfaces

A. Widorn
Physics Department, Northeastern University, 110 Forsyth Street, Boston MA 02115

L. Larsen
Lattice Energy LLC, 175 North Harbor Drive, Chicago IL 60601

Low energy nuclear reactions in the neighborhood of metallic hydride surfaces may be induced by ultra-low momentum neutrons. Heavy electrons are absorbed by protons or deuterons producing ultra-low momentum neutrons and neutrinos. The required electron mass renormalization is provided by the interaction between surface electron plasma oscillations and surface proton oscillations. The resulting neutron catalyzed low energy nuclear reactions emit copious prompt gamma radiation. The heavy electrons which induce the initially produced neutrons also strongly absorb the prompt nuclear gamma radiation, re-emitting soft photons. Nuclear hard photon radiation away from the metallic hydride surfaces is thereby strongly suppressed.