Progress, in the Condensed Matter Nuclear Science, on excess energy production: towards practical applications?

Francesco CELANI

National Institute of Nuclear Physics, Frascati National Laboratories, Italy Vice-President of *International Society of Condensed Matter Nuclear Science*

(David Nagel, 2011)

Magazine Cover Stories 8 May 1989

TRULY EXTRAORDINARY INTEREST

Martin Fleischmann

Stanley Pons

TFTR Princeton University

A Major Problem with LENR

Progress = Robust Results

Better Instrumentation, Calibration and Controls

Some Systematics Found & Verified for Heat Generation Experiments

Nuclear Ash Measured & Correlated with Heat Production

Many New Experiments Performed

More Attention to Materials

Improved Inter-Lab Reproducibility

Continuous Activity & International Conferences

Electrochemical Loading & Heat Measurements

Power x Time = Heat Energy

Temperature Increase

Experimental Summary

Each type of result individually indicates that nuclear reactions occur in diverse experiments at modest temperatures.

The database is robust & the <u>observed</u> effects must be due to nuclear reactions!!

Measurements of Large Excess Heat Systematics Seen for Heat Production Helium can be Produced **Heat-Helium can be Correlated** Tritium can be Produced **Neutrons Measured in Bursts Observations of X-and γ-Rays MeV-Energy Particles Measured Observations of Sound Impulses Craters in Cathodes Measured Hot Spots Measured on Cathodes New Elements Measured**

Initially: The Situation was Very Uncertain

INCORRECT, UNCERTAIN & CORRECT SCIENCE

The ICCF Series of Conferences

AMERICA	EUROPE	ASIA
1. Salt Lake City	2. Como Italy	3. Nagoya Japan
4. Maui Hawaii	5. Monaco	6. Sapporo Japan
7. Vancouver	8. Lerici Italy	9. Beijing China
10. Cambridge	11. Marseilles France	12. Yokohama Japan
14. Washington DC	15. Rome Italy	13. Sochi Russia
		16. India
Other Conf	17. Korea Aug 2012	
12 in Russia, 6 in Japa		

many sessions at various society conferences

Characteristics of Low Energy Nuclear Reactions

Experimentally, it is known that LENR offer:

Little Dangerous Radiation Safe

Little Residual Radioactivity Clean

No Greenhouse Gases Green

Small energy sources Distributed

Individually, these attributes are important. Together, they might be historic.

Can LENR be commercialized????

The Possible Evolution of LENR

Two Major Parts of the Field Now

Electrochemical Loading of Deuterons into Palladium.

The initial Fleischmann-Pons approach
Most work in the field has been in this class

Gas Loading of Protons into Nickel

Work began by Piantelli in early 1990s Approach used by Rossi in recent years

BIG Unresolved Questions about LENR

Are the reactions only nuclear, only atomic or both?

Is there one mechanism active or are there multiple processes?

Do the reactions occur only on the surface of materials or also in the bulk (volume) of the materials?

What, if anything, is common to electrochemical and gas loading experiments that have exhibited excess power and heat?

What is the root cause of experimental irreproducibility?

What external factors can be used to initiate and control LENR?

Investigation of Anomalous Heat Observed in Bulk Palladium

Gustave C. Fralick (Project Lead),
John D. Wrbanek, Susan Y. Wrbanek,
Janis M. Niedra (ASRC) and Marc G. Millis
with

David J. Spry, Roger Meredith and Jim Mazor (TFOME/Sierra Lobo)

NASA Glenn Research Center Cleveland, Ohio

RESULTS (Preliminary): Temperatures vs. Time

Short list, non exhaustive, of main experiments devoted to Excess Heat generation. Only qualitative aspects, best results (improvement/innovations in red colour)

Authors	Year	Excess P _W	Temp. (°C)	Experiment	Notes
Affiliations		Gain%		type	
Fleisch.&Pons	1989	.01-1W	30°	Electrolysis	Rod
Univ. SLC		2-5%		Pd/Pt	Isoperibolic
USA				LiOD .1M	Calorimetry
Mc. Kubre	1990	.1-3W	30°	Electrolysis	Rod
SRII, USA				Pd/Pt	Flow Calorim
				LiOD .1M	
A. Takahashi	1991	5-60W	30°	Electrolysis	Plate
UNIV. Osaka		25%		Pd/Pt	(25x25x1mm)
Japan				LiOD .1M	Flow Calorim

	Takahashi Replication				
Celani-I	1992	1-8W	30 °	Electrolysis	Plate
De Ninno-I		2-8%		Pd/Pt	Flow Calorim
Mellove-USA				LiOD .1M	Batch probl.
					Part. replic.
Piantelli	1993	5-40W	350°	Gas H2	Rod
Univ. Siena		10-50%		Press. <1bar	Therm.
Italy					emission
Arata	1993	2-20W	40°	Ibrid. DSC	Sub-micro
Univ. Osaka		20%		Elettr&press	Pd Powder
Japan				(1000bar)	Flow
					Calorimetry
Kunimatsu	1994	1-10W	40 °	Electrolysis	Rod
Toyota-Japan				Pd/Pt	Isoperibolic
				LiOD 1M	Calorimetry

Preparata	1995	1-20W	50 °	Electrolysis	Long and thin
Leda-Italy		5-50%		Pd/Pt	Pd wires
				LiOD	Isoperibolic
				0.005M	Calorimetry
Celani	1995	2-20W	40°	High Power	Pd wires, thin
INFN-Italy		5-60%		Pulsed Electr.	Isoper. and
				J>150kA/cm ²	Flow Calor.
Miley	1997	1-10W	40 °	Electr. H2	Isoper. and
Univ.		200%		Nano-beads:	Flow Calor.
Chicago-USA				Plastic-Ni-Pd	
				multilayer	
DeNinno-	2000	0.05-0.5W	40 °	Electr.	Thick film,
Violante-Prep		100%		Pd/Pt LiOD	l=1m
ENEA-Italy					self-destruc.

Arata	2002	2-20W	30°	Ibrid. DSC	Nano-particle
Univ. Osaka		5-20%		Elettr&press	Zr ₀₂ -Pd
Japan				(1000bar)	2 months
Arata Repl.					
McKubre	2003	1-10W	30°	Ibrid. DSC	Confirmed
SRII-USA		4-15%		Elettr&press.	
Celani	2004	10-20W	300°	Pd thin wire;	Isop. Calor.
INFN-Italy		200%		surface	Only
				nano-coated,	30minutes
				H2, 6bar	later self
					destructed.
Arata	2005	10-30W	180°	Nano-particl.	12 hours
Univ. Osaka		15-25%		Zr0 ₂ -Pd	
Japan				D2, 60bar	

Arata	2008	.2-1W	25°	Nano-particl.	Differential
Univ. Osaka		infinite		3-20nm	Calorimeter
Japan		(no power		Zr0 ₂ -Pd	
		iput)		D2, 60bar	
Celani	2008	1-5.5W	550°	Pd wire	Diff. Calor.
INFN-Italy		5-10%		nano-coated	In-situ
				D2, 6Bar	400W/g Pd
					12hours
Arata Repl.					
Takahashi,	2008	.1-1W	25°	D2, 60 bar	Confirmed,
Kitamura		infinite			Industrial
Toyota,		(no power			material by
Univ. Osaka		input)			Santoku KK
Japan					(Japan)
Arata method and improvements by Brian Ahern (USA), Takahashi&Kitamura					

Ahern	2009	.5-3W	25°	D2, 60 bar	ZrO ₂ -Ni-Pd
Ames Lab.		infinite			nanoparticles
USA					
Celani	2010	2-26W	900°	H2-Ar, (D2),	6 days.
INFN-Italy				6 bar Ni wire,	Power density
		3-15%		nano-coated,	1800W/g Ni.
Rossi	2011	10kW	>100°	Ni nano-	Flow calorim.
EFA-Italy		600%		powders+X?	NO ind. test
				H2, 25bar	>6months??
Defkalion	2011	10kW,	>200°C	Ni nano-	Flow calorim.
Greece		2500%		powders+Y?	NO ind. test
				H2, 25bar	>1month??

Celani	Nov. 2011	10W	>260°	Cu-Ni	Flow-calorim.
INFN-Italy	Reconfirmed	15%		alloy	Wire from
	Jan. 2012			Micro-Nano	PTC to NTC
				coated	resistance,
				thin wires	related to
					thermal
					anomalies
Takahashi-	Dec. 2011	In progress	In progress	Cu8%Ni32%-	Flow-calorim.
Kitamura	(JCF12			-Zr60%	EndoT<100°C
Toyota-	Congress,			Nano-powder	ExotT>200°C
Univ.Kobe	Japan)			H2, D2	
?	2012	??	??	??	??
?	2012	??	??	??	??

Conclusions

• After very turbulent beginning, due to poor reproducibility, the Researchers involved in the Science field of Condensed Matter Nuclear Science, step-by-step, improved the quality and reproducibility of the results obtained.

Among other things, it is a pity that excellent experiments, like those performed by NASA, were not immediately made public, but after 15 years: the reality of LENR was reconfirmed, even in gaseous environment (D_2) and high temperature $(350^{\circ}C)$, after only 9 months from F&P first paper!

The reconfirmation of the 1989 NASA experiment was performed on Dec 2009, perhaps to be concealed in the same way... but luckily it was found, by chance, in August 2011!

• The most innovative experiments were cross-controlled by other groups, with enough specific experience and not linked directly to the Scientists that claim extraordinary results.

- As time passed, it began evident, specially thanks to Yoshiaki Arata, the role of specific nano-materials (e.g. ZrO₂65%-Pd35%) able to absorb large amounts of Deuterium even under mild pressure (60bar).
- Thanks to gas environments, instead of initial electrolysis, the possibility to increase the temperature become evident and possible practical applications were planned.
- Under gaseous atmosphere, mixture of H₂-Ar, it was possible to detect anomalous excess heat even at wire (Ni, nano-coated at the surface) temperature as large as 900°C. The experiment lasted up to 6 days and other expert Scientist, external to the (Celani) group, made all kinds of tests they wished.

- The recent, extraordinary claims of Rossi and Defkalion group (gain 600% and 2500% respectively, at temperature larger than 100°C and 200°C), until they will not be verified by independent tests, must be regarded with attention and caution at the same time. In other words, when we consider the progress made in CMNS studies, we feel that the Rossi-Defkalion claims are not impossible in principle, but they must be proved in public under strict control, ASAP.
- Apart from the Rossi and/or Defkalion claims, the quality of experiments worldwide performed was so high and the results obtained so widespread, that an International Program, well funded and based on multidisciplinary approach, has the possibility to build a "device" producing even electricity with very low, overall, emissions.
- Regarding the theory, it is growing the interpretation that such phenomena arise because of the "Weak Force" (Larsen-Widom model) instead of the previously thought, conventional "Strong Force". A well known Researcher (A.Takahashi) recently developed a model where both forces can be active.