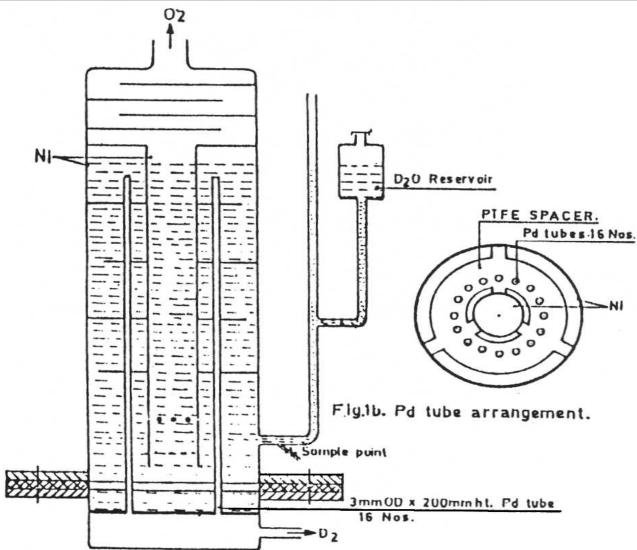
"OBSERVATION OF NEUTRONS AND TRITIUM IN A WIDE VARIETY **OF LENR CONFIGURATIONS : BARC RESULTS REVISITED**" Mahadeva Srinivasan (Formerly of BARC) ACS Symposium on "New Energy Technologies" Salt Lake City, Utah, USA 23rd March 2009

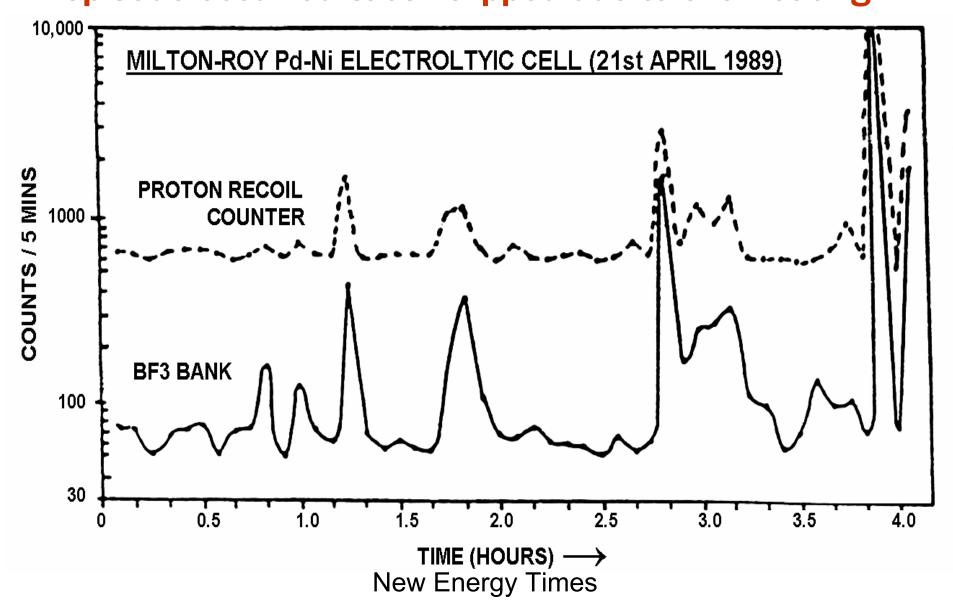
LENR RESEARCH AT BARC Phase i : 1989 to 1991 (ICCF 1/Provo) (Most productive era !) Phase ii : 1992 to 1995 (ICCF 3,4,5) (Post lyengar period) Phase iii : 1996 to 2007 (12 years) (India totally blanked out !) Phase iv : 2008 Hopes of revival (Following NIAS meeting of 9th January 2008)


HIGHLIGHTS OF EARLY BARC WORK (Started on 24th March 1989)

- BARC has > 50 Divisions & 3000 Scientists!
- 12 teams (~ 50 scientists) took up challenge
- To verify "nuclear origin" of phenomenon
- Looked for neutrons & Tritium (Not excess heat)
- Within months all teams reported both n & T
- Among first groups to find branching ratio anomaly namely (n/T) = ~ 10⁻⁷
- ICENES Karlsruhe 4th to 7th July 1989
- Report BARC 1500 (Aug '89) (historical role!)
- ICCF 1, Provo Conf. & Fusion Technol. paper of Aug '90 with 50 authors summarize this work

MILTON ROY Pd-D₂O ELECTROLYTIC CELL

- Neutron Physics Division was lucky !
- Fortuitous coincidence that on 24th March 1989, the "worlds largest cold fusion cell" (300 cm² cathode area) was all set & ready to be switched on!
- Had been imported from M-R co. of Ireland and adapted to generate "pure" D₂ gas.
- Uses Pd-Ag alloy tubular cathodes (16 nos)
- Inner/outer Ni pipes as anode.
- Max current capacity ~100 amps


SCHEMATIC OF MILTON-ROY ELECTROLYTIC CELL 300 cm² cathode area; 100 amps current; Largest? Ready to be operated with NaOD on 24th March 1989 !

NEUTRON DETECTION CHANNELS

- Three channels : Two for foreground, One for background
- Foreground 1 : Three BF₃ counters embedded in a large paraffin block (thermal neutron detector)
- Foreground 2 : Recoil type plastic scintillator fast neutron monitor
 Background monitor : He³ counters embedded in paraffin

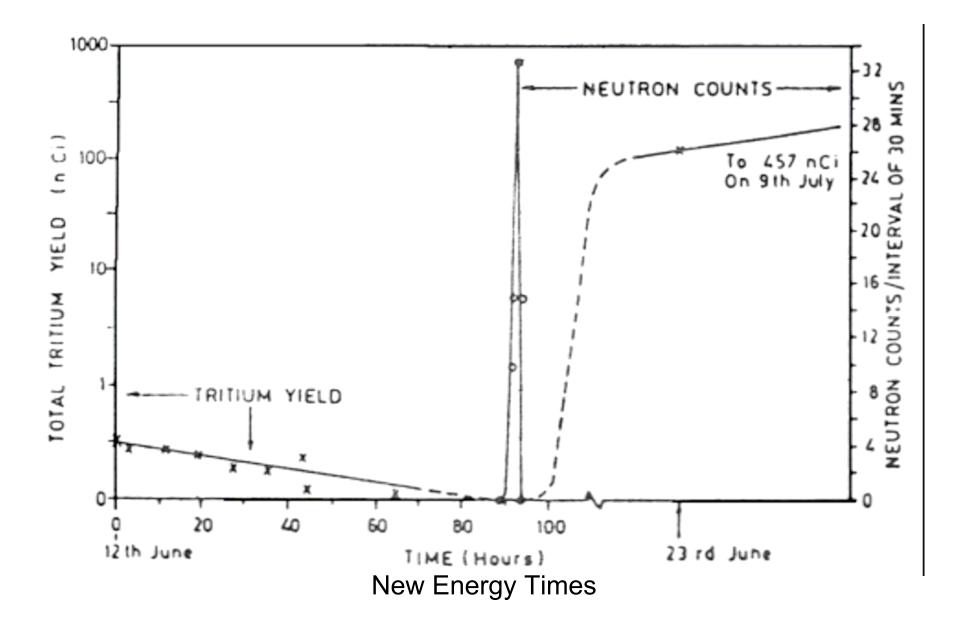
VARIATION OF NEUTRON COUNTS DURING RUN NO.1 Current slowly increased to 100 A when a huge n episode occurred & cell tripped due to overheating!

Temporal characteristics of "n" emission : nomenclature used

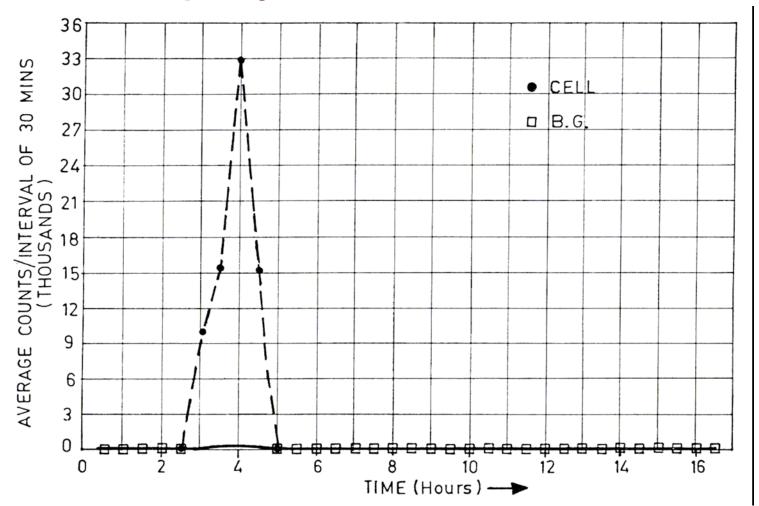
- Distinguish between "spike type episodes" and neutron "bursts".
- In "burst "events multiple neutrons emitted "simultaneously".
- Steady neutron output" or "spike type episodes" could in turn comprise of a series of rapidly occurring "bursts".
- Discussed further in second paper

Tritium in Electrolyte Sample

- Electrolyte samples sent for tritium analysis
- Sample from MR cell showed massive amount of 1.5 µCi/ml after the 21st April 89 incident!!
- Pre electrolysis value in stock D₂O was only 0.075 nCi/ml (Increased by factor of 20,000 !)
- This corresponded to total T production of 8.10¹⁵ atoms
- Total neutron yield in 4 hr run was : 4.10⁷
- Hence (n/T) ratio5.10⁻⁷
- First hint of branching ratio anomaly!

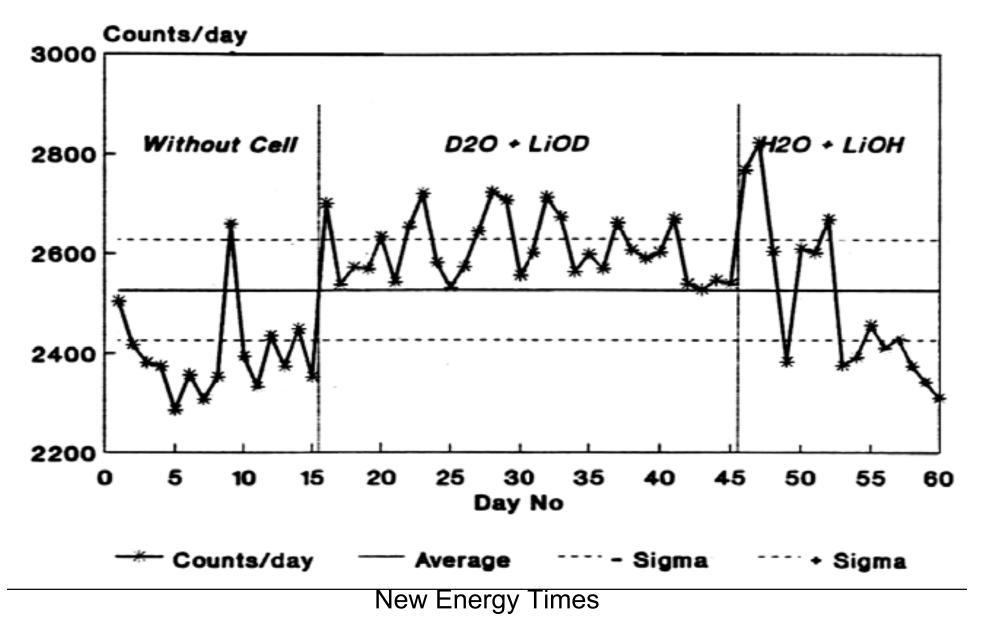

BARC ELECTROLYSIS EXPERIMENTS (1989-90)

Division	Cathode Matl			Anode		Tritium Yield	n/T Ratio	
1 Desalin *	Ti	Rod	104	ss pipe	3.10 ⁺⁷	1.4 10 ⁺¹⁴	2.10 ⁻⁷	
2 Neut. Phy.*	Pd-Ag	Tubes	300	Ni Pipes	4.10 ⁺⁷	8.10 ⁺¹⁵	5.10 ⁻⁷	
3 HWD *	"	44	300	u	9.10 ⁺⁷	1.9 10 ⁺¹⁵	5.10 ⁻⁷	
4 HWD *	"	5 Disks	78	Porus Ni	5.10 ⁺⁴	4.10 ⁺¹⁵	1.2 10 ⁻⁹	
5 Anal.Ch.@	Pd	Hol.Cyl.	5.9	Pt Mesh	3.10 ⁺⁶	7.2 10 ⁺¹³	4.10 ⁻⁸	
6 ROMg @	"	Cube	6.0	ű	1.4 10⁺⁶	6.7 10 ⁺¹¹	1.7 10⁻⁴	
7 ROMg@	"	Pellet	5.7	"	3.10 ⁺⁶	4.10 ⁺¹²	1.10⁻⁴	
8 App.Chem @	D "	Ring	18	"	1.8 10 ⁺⁸	1.8 10 ⁺¹¹	1.10 ⁻³	
Electro	Electrolyte : * 5M NaOD @ 0.1M LiOd New Energy Times							


NEUTRON AND TRITIUM OUTPUT ROMG CELL 11 mm Cyl. Pd Pellet cathode -13th Feb 1990

NEUTRON & TRITIUM YIELD DURING RUN NO. 2 (Milton-Roy Cell - 12th June 1989) Tritium levels in electrolyte measured daily

MILTON ROY CELL : NEUTRON EMISSION EPISODE 50 HRS AFTER CURRENT PUT OFF (16th June 1989) Multiplicity Distribution also Measured

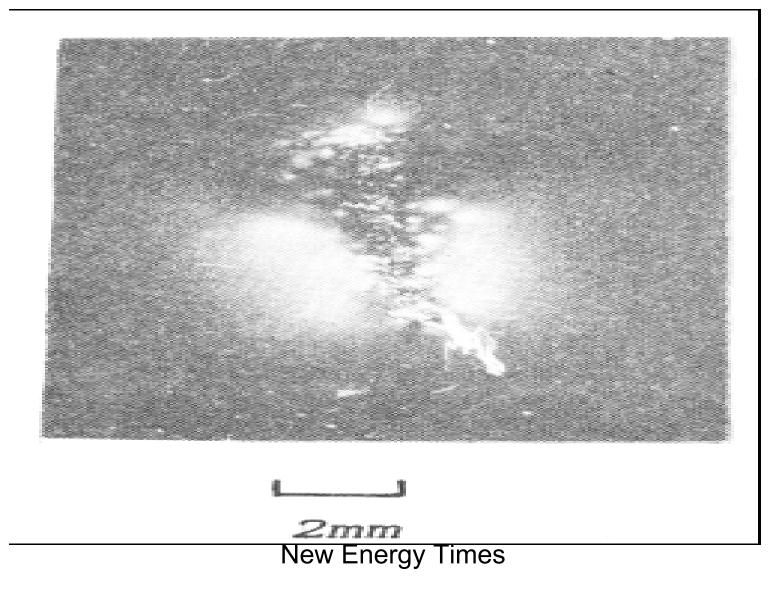


Conclusions From Above Results

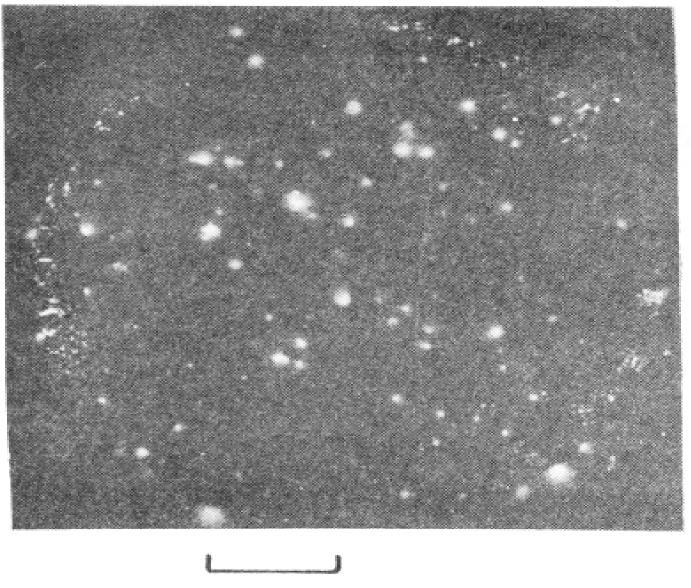
- Tritium is produced whenever neutrons are generated;
- Both branches of d-d reaction seem to take place more or less simultaneously even if it be with different probabilities?

More on implications of this later .

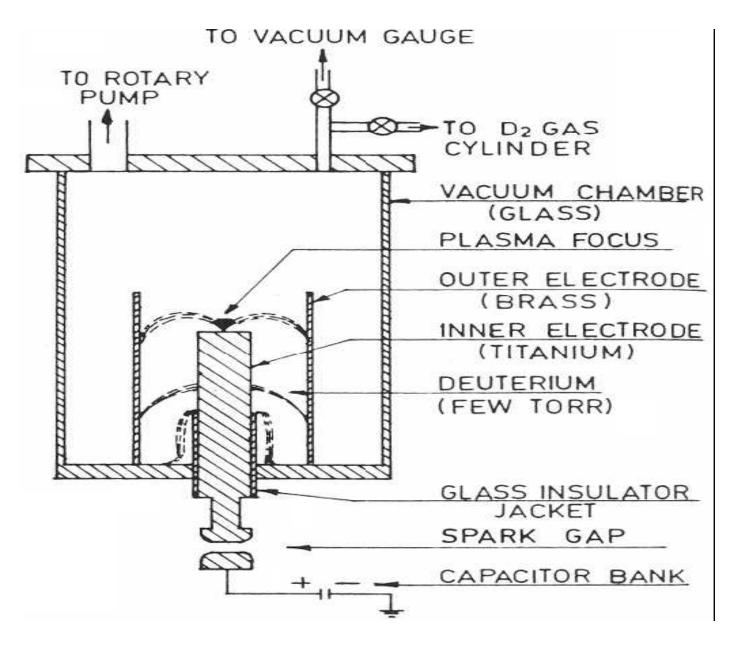
NEW MILTON-ROY CELL (1994) NEUTRON YIELD VARIATION

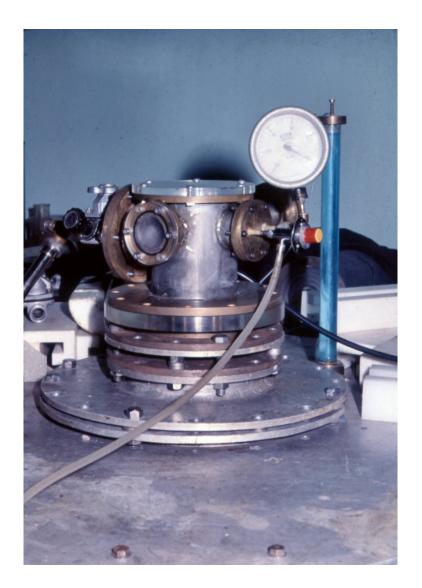


STUDY OF DEUTERATED TITANIUM TARGETS (Gas/Plasma Loaded)


Got interested in TiD targets following Scaramuzzi's work!

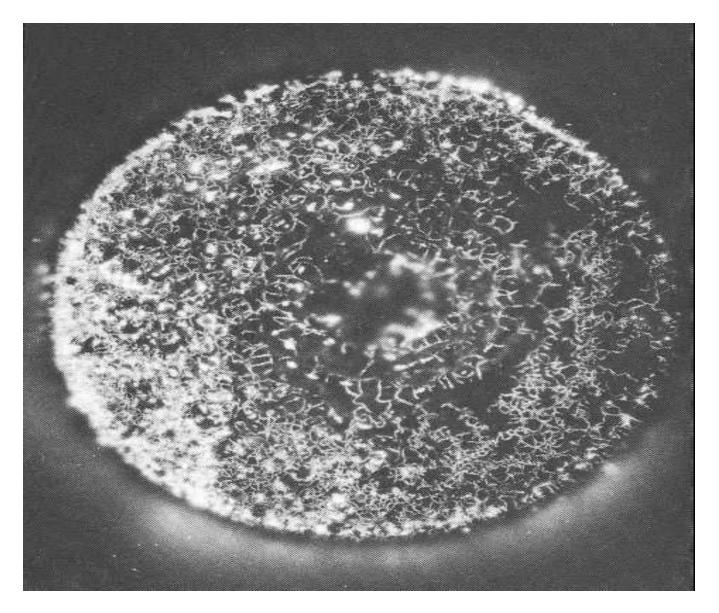
We used autoradiography as a very effective tool !

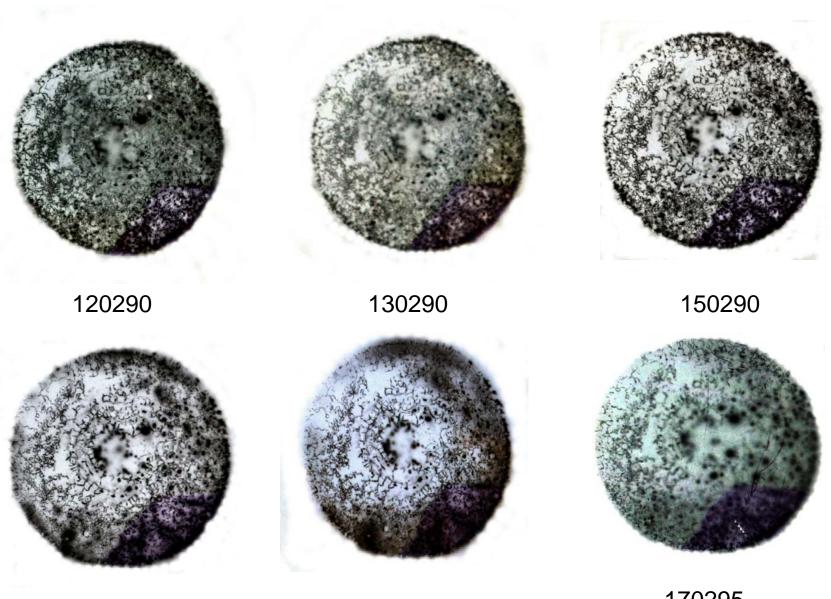

AUTORADIOGRAPH OF DEUTERATED CONICAL TI ELECTRODE (Used in Gas Discharge Expts years ago!)



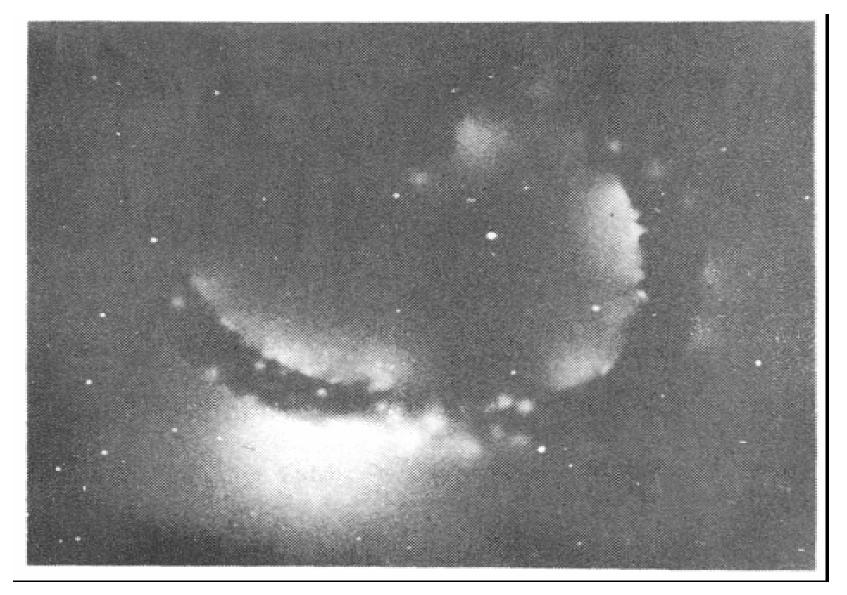
AUTORADIOGRAPH OF TI DISC TARGET SHOWING ACTIVE SPOTS

SCHEMATIC OF PLASMA FOCUS DEVICE (Hot Fusion)





PLASMA FOCUS SET UP



AUTORADIOGRAPH OF TI ANODE OF PF DEVICE AFTER 50 DISCHARGE SHOTS

AUTORADIOGRAPH OF A DEUTERATED TI SHAVING INDICATING TRITIUM – CONTAINING HOT SPOTS (Kaushik, T. C. *et al, Indian J. Technol,* 1990, 28, 667)

SECOND PAPER

"Observation of High Multiplicity Neutron Emission Events from Deuterated Pd and Ti Samples at BARC : A Review"

STATISTICAL CHARACTERISTICS OF NEUTRON EMISSION

- Are the neutrons emitted one at a time in a random fashion following Poisson Statistics?
- Or are there neutron bursts wherein many neutrons are emitted in a bunch implying chain reaction events ?
- Experimental method exploits fact that slowing down time of fast neutrons in moderator assembly surrounding thermal neutron detector is ~ 30 microsecs!
- Hence two or more neutrons from same event can be separately detected.

PUBLICATIONS

(Give complete theoretical considerations)

- "Statistical Analysis of Neutron Emission in Cold Fusion Experiments", Srinivasan M. et al, (ICCF 1, 1990)
- "Observation of High Multiplicity Bursts of Neutrons During Electrolysis of Heavy Water with Palladium Cathode Using the Dead-Time Filtering Technique", Shyam A et al, (ICCF 5, 1995)

Theoretical Considerations For Poisson Distribution (Random)

- ► N_o...> count rate due to random events
- t....> counting time interval (say 20 ms)
- N_ot—> Prob. of registering 1 count
- For case when $N_ot << 1$
- N_ot—> prob. of registering 1 count
- ► $(N_o t)^2/2! \rightarrow \text{of 2 counts}$
- $(N_o t)^3/3! \rightarrow \text{ of 3 counts and so on}$

Theory For Burst Events (Binomial Distribution)

- S.....> burst events/sec, emitting
- **V**> neutrons in each burst
- **E**> efficiency of neutron detection
- Contn of burst events to count rate...> SVE
- For V >> and E <<1</p>
- Prob P_r of getting r counts in time t given by
- $P_{r}....[(V\epsilon)^{r}/r!]e^{-\epsilon v}$
- Peaks for multiplicities close to product "VE"

TABLE I

Expected Frequency Distribution of Counts for Poisson and Bunched Neutronic Events for Typical Sets Parameters

	Frequency of Counts in 20ms Intervals for 10 ⁵									
Multiplicity	Poisson	Events	Bunched Events (S=10 ⁻² per sec)							
Multiplicity Of counts	N ₀ =0.3 cps	$N_{2}=3.0$ ong	v = 100	v = 100	v = 500	v = 500				
	1 n ₀ -0.5 cps	N ₀ -5.0 cps	$\varepsilon = 0.005$	$\epsilon = 0.015$	$\epsilon = 0.005$	ε = 0.015				
			Sve = 0.005	Sve = 0.015	Sve = 0.025	Sve = 0.075				
0	99940	99402	99992	99984	99980	99980				
1	60	597	6.1	6.6	4.00	0.07				
2	$\sim 10^{-2}$	1.7	1.5	5.0	5.1	0.3				
3	~10 ⁻⁹	$\sim 10^{-2}$	0.2	2.5	4.2	0.8				
4	~10-9	~10-5	0.03	1.0	2.6	1.5				
5	~10 ⁻¹³	~10 ⁻⁸	0.003	0.33	1.3	2.2				

TABLE II

Frequency Distribution of Background counts in Two Detector Banl

Counting interval	$20\mathrm{ms}$
Total counting time	63 hrs

Multiplicity of counts	Frequency				
Munipheny of counts	BF3 Bank	He ³ Bank			
0	750035	743948			
1	339	6413			
2	1	14			
3	0	0			
4-20	0	0			
N_0	0.023cps	0.43cps			
$N_0 \tau$	5×10^{-4}	0.0086			

TABLE II: MULTIPLICITY DISTRIBUTION OF NEUTRON COUNTS IN 10 ms INTERVALS

(Milton-Roy Electrolytic Cell: Friday 16th June 1989)

	·						BF	3 Co	unte	er Bai	ık					³ He	Cou	nter
Time								(S	igna	al)							Bank	2
																(Bac	ekgro	und)
(Hrs)	1^{*}	2*	3 *	4	5*	6*	7 *	8*	9*	10 *	11 *	12 *	13 *	14^{*}	15 *	1^{*}	2^{*}	3*
18.55	124	21	4	1	-	-	-	-	-	-	-	-	-	-	-	2	1	-
19.00	54	9	1	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
19.05	335	54	7	2	1	-	-	-	-	-	-	-	-	-	-	4	-	-
19.10	320	82	10	-	-	-	-	-	-	-	-	-	-	-	-	5	-	-
19.15	243	13	4	-	1	-	-		-	-	-	-	-	-	-	5	-	-
19.20	315	35	3	1	-	-	-	-	-	-	-		-	-	-	4	-	-
19.25	295	24	-	1	-	-	-	-	-	-	-	-	-		-	5	-	-
19.30	492	51	3	2											-	4	-	-
19.35	447	42	2	1	-	-	-	-	-	1	-	1	-	-	-	9	-	-
19.40	104	13	4	-	-	1	-	-	-		-	-			-	5	-	-
19.45	355	49	1	1	-	1	-	-	-	-	-		-	-	-	33	1	-
19.50	395	99	16	2	-	-	-	-	1	-	-	-	-	-		22	3	-
19.55	55	24	7	33	2	1	1	1	1	1	2	2	1	-	5	6	2	-

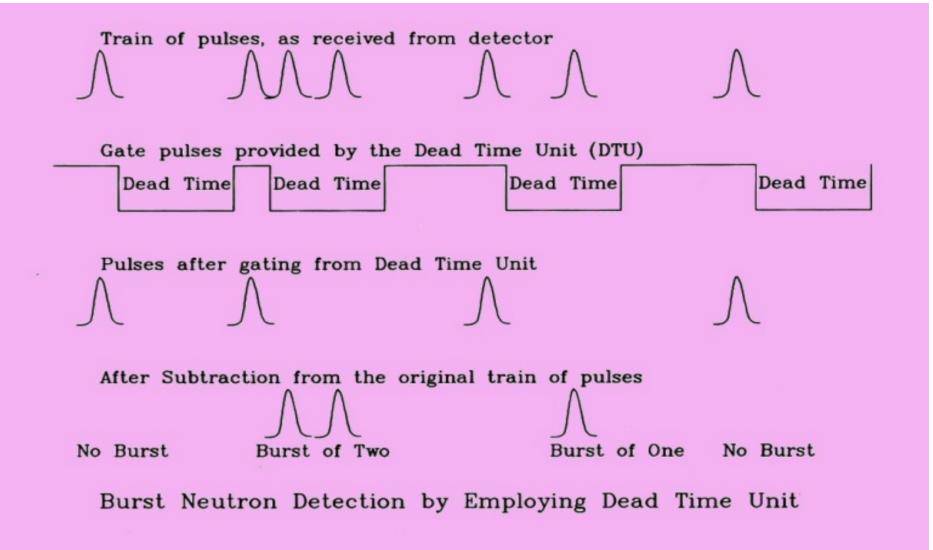
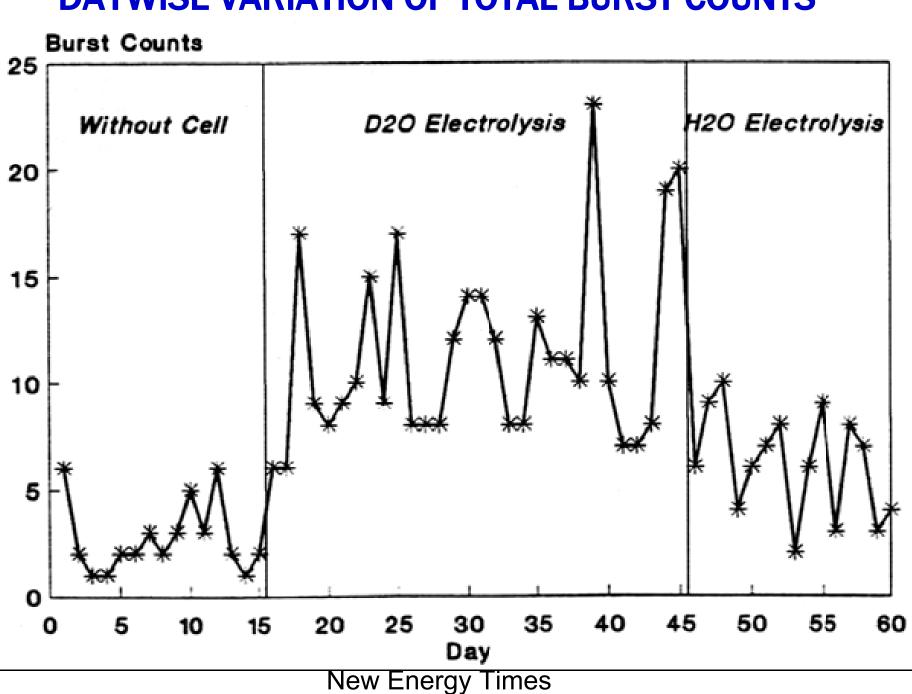
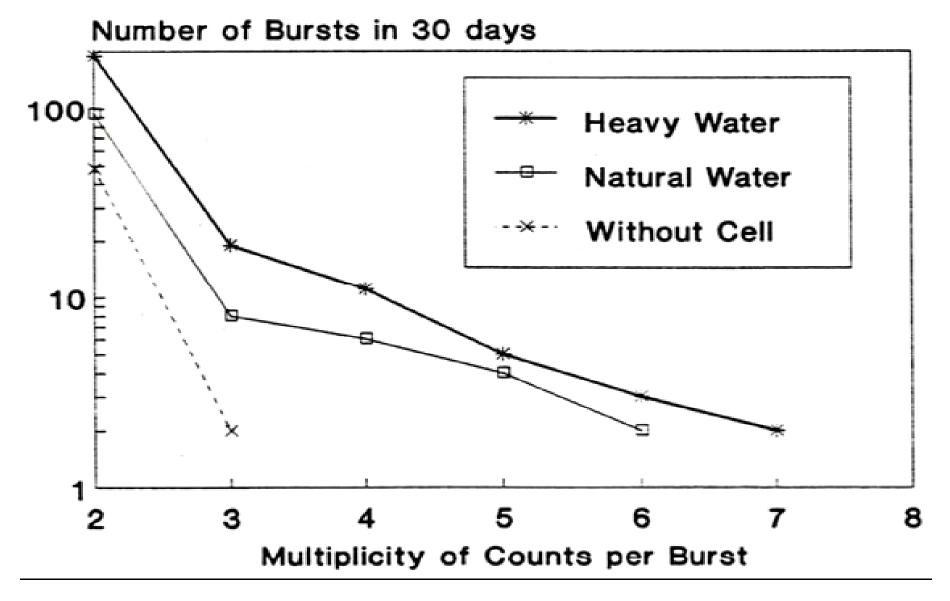

(*) Starred numbers represent the multiplicity of counts obtained in a single 10 ms interval. The respective frequency of occurrence (per 1000 gated intervals) is given in the corresponding column below.

TABLE III

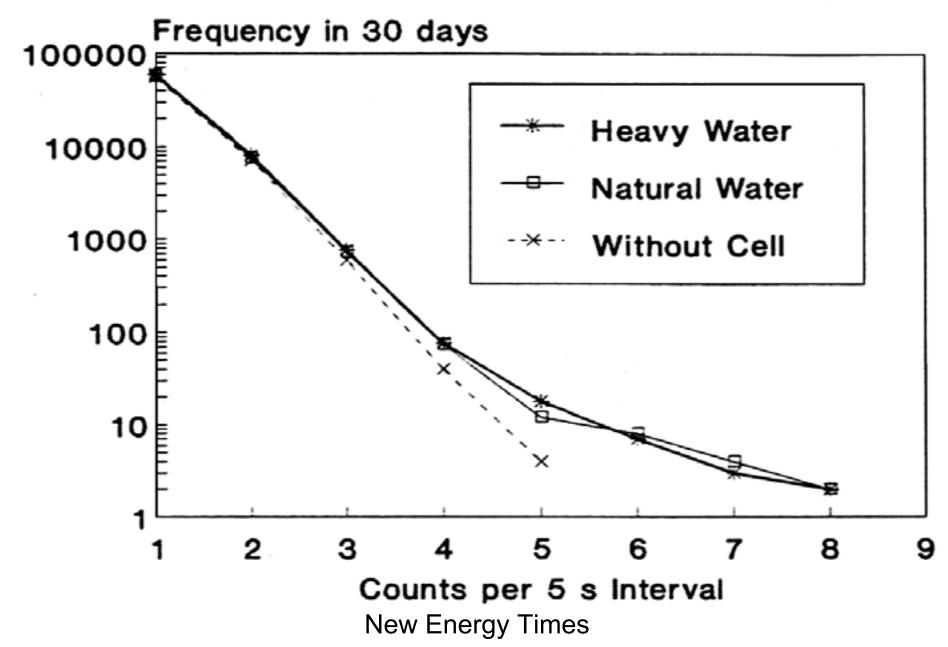

Frequency Distribution of Counts in BF3 Bank and Plastic Scintillator with Quiescent Miltor

Counting period	12 hrs
Counting interval	20 ms
Total number of sampling	144000 intervals

Multiplicity of counts	Gross Frequency	Frequency in those samples in which plastic scintillator records a count
1	11941	114
2	2760	31
3	111	0
4	19	0
5	2	0
6	13	0
7	9	0
8	3	0
9	5	0
10	1	0
11	0	0
12	1	0
13	0	0
14	0	0
15	1	0
16	0	0



Principle of Dead Time Method


DAYWISE VARIATION OF TOTAL BURST COUNTS

FREQUENCY DISTRIBUTION OF BURST COUNTS INTEGRATED OVER 30 DAY PERIOD

New Energy Times

FREQUENCY DISTRIBUTION OF 5 SEC COUNTS INTEGRATED OVER 30 DAY PERIOD

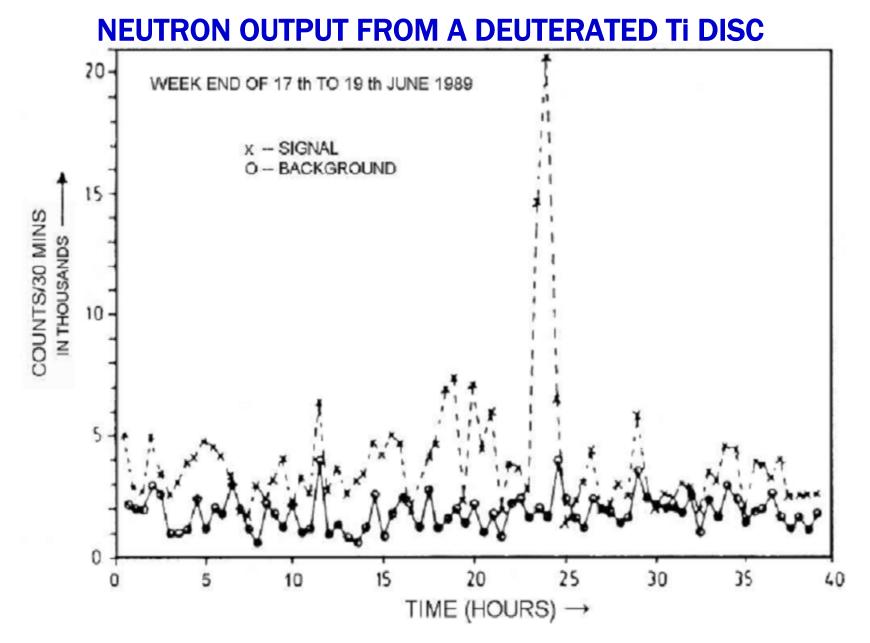


Fig. 2. Neutron Output from a Deuterated Ti Disc.

CONCLUSIONS OF "N" MULTIPLICITY STUDIES

- 10 to 20 % of neutrons produced could be attributed to high multiplicity events wherein
 20 neutrons are generated per burst!
- Majority (>80%) neutrons detected however obeyed Poisson statistics, i.e single detection events. But that does not necessarily prove they were in fact emitted only as singles!
- For example if 10 neutrons emitted in a sharp burst, even our set up with 10% detection efficiency may not have detected multiplicity!

OVERALL CONCLUSIONS FROM THE EARLY BARC STUDIES

SWITCH ON TIME FOR NEUTRONS

- A dozen groups of novices set up cells using Pd samples lying about in the laboratory and yet detected neutrons and tritium within the first day itself !
- Switch on time": 6 out of the 11 cells detected first neutron signal within 9 hours, one gave within 24 hrs; 2 cells yielded in a couple of weeks!
- But on continued electrolysis all stopped yielding neutrons →poisoning effects !
- For "n" → high loading clearly not needed.

FOUR MOST IMPORTANT FINDINGS OF BARC EXPERIMENTS

- Neutrons are emitted in bunches of 10s or even 100s.
- n & T seem to be produced simultaneously with (n/T) ~ 10⁻⁷ (branching ratio anomaly)
- In case of titanium targets, tritium found in cold worked defect sites ... hot spots.
- The generated tritium stays put in same spot for years → poor diffusion rate in titanium !

IMPLICATIONS

- (n/T) ~ 10⁷ —> means on an average one n emitted for every 10 million tritons !
- Since neutrons themselves occur in bursts of 10s to 100s, follows that T produced in zillions....sort of chain reaction or micro nuclear explosion (MNP)!
- Superimpose on this finding that tritium found in highly localized hot spots which serve as NAE sites!
- Forced to speculate that MNP occurs in single nano particle ?

MICRONUCLEAR EXPLOSION HYPOTHESIS !

- Speculate that at an NAE site somewhere between 10⁶ to 10¹⁰ tritium producing reactions occur in some sort of avalanche type nuclear reactions or micro nuclear explosion (within time span of nano seconds?) at a highly localized NAE spot.
- It is for theoreticians to come up with a mechanism for such chain events!

POSSIBLE DOUBTS

- How come no one else has observed bunched neutron emission ? Ans : No one has looked for it!
- If the neutron detection efficiency is say 1% and one neutron count is registered, it could still have resulted from a single burst of 100 neutrons on account of the 1% detection efficiency!
- If 10 counts are registered during a 1 minute interval it could imply either that there were 1000 events in which 1 neutron each were emitted (single neutron events) or there may have been 10 burst events each of which emitted 100 neutrons each!

- How come in case of Pd, autoradiographs don't show spotty behavior?
- Ans: In Pd diffusion rate is probably very high; so tritons, even if produced in a localized NAE site, quickly redistribute.
- Online thermal cameras have detected thermal hot spots on Pd cathode surface.)

STRONGLY RECOMMENDED

More experimental groups should attempt neutron multiplicity measurements, preferably using the Dead Time Technique.

Revival : NIAS Meeting 9th Jan 2008

- One Day Meeting on "Emerging New Energy Concepts for the 21st Century" on 9th Jan 08
- Held at the "National Institute of Advanced Studies" (NIAS), Bangalore.
- Former Chmn, AEC Dr.M.R.Srinivasan present;
- Michael McKubre, Steven Krivit & M.Srinivasan gave talks;
- Video talk of Ed Storms screened.
- Director BARC sanctioned meeting on "Materials issues in CMNS devices" in Feb 2009! But unfortunately postponed due to terrorist attack !

THANK YOU !

NICKEL HYDROGEN EXPERIMENTS

TRITIUM PRODUCTION IN HYDROGEN LOADED NI WIRES (Variation along length of wire)

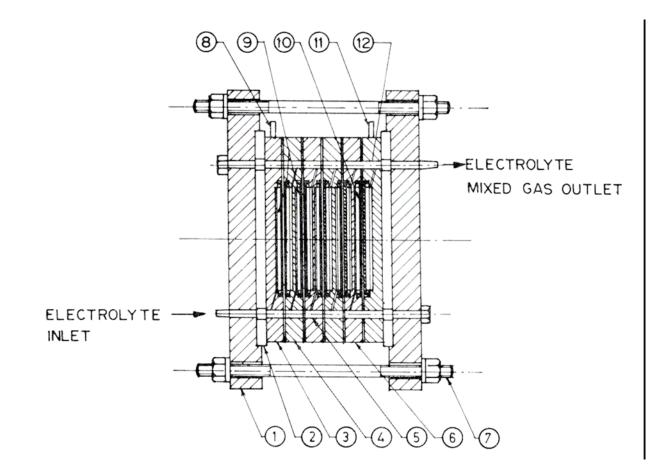
- Table 2. OBSERVED TRITIUM ACTIVITY IN DISSOLVED CUT PIECES OF Ni WIRE SUBJECTED TO SEVERAL HYDROGEN ABSORPTION / DESORPTION CYCLES
- Sr. No. Dissolved Cut Wire Sample # Average Excess Over Background Counts * per 10 minutes (1 ml Solution)
 Total Tritium Activity in Cut Wire piece (5 ml Solution) (Bq)

1	23/1	313	13
2	501/1	532	22
3	504/4	152	6
4	504/5/I	70	3
5	504/5/II	103	4
6	24/1	440	18
7	24/2	690	28
8	24/3	1150	47
9	27/1	950	38
10	27/2	704	28
11	27/3	57650	2333
12	30/1	1560	63
13	30/2	220	9
14	30/3	550	22
15	Standard	4200	170

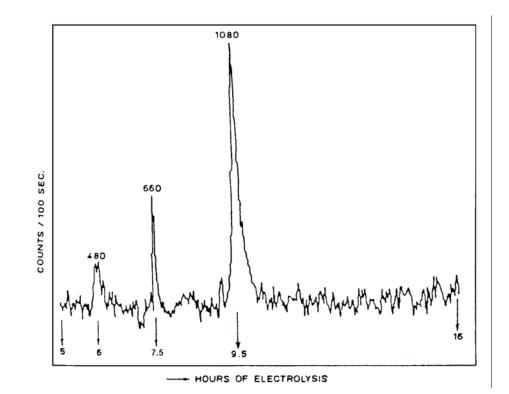
 * Background count rate was approximately 250 counts in 10 minutes. 10 % in excess of BG represents limit of sensitivity

Comment on sensitivity of n and T detection

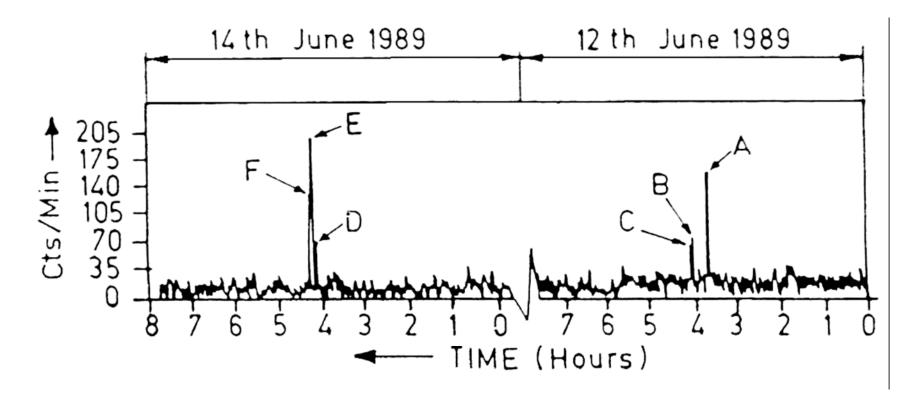
One of Earliest Review Papers of CMNS Field "Nuclear fusion in an atomic lattice: An update on the international status of cold fusion research" M. Srinivasan Neutron Physics Division, BARC Trombay, Bombay 400 085, India


Abstract

- * Current Science, 1991. 60: p. 417 New Energy Times


TABLE I: TRITIUM PRODUCTION IN ELECTROLYTIC

SI DIVISION	CATHODE	ELECTROLYTE	VOL.	MAX.	TRITIUM	TRITIUM
No /GROUP	MATERIAL		$OF \: D_2 O$	CELL	LEVELS	PRODUCTION
	/SHAPE		SOLN.	CURRENT	(Bq/ml)	


					(Amps)	INI- TIAL	FINAL (10^3)	(Bq) (10 ⁶)	Atoms (10 ¹⁴)
1.	HWD/NtPD	-	5 M NaOD in D ₂ O	250 ml	100	2.6		13.9	80
2.	"	"	"	"	"	10.0	4.4	1.1	6
3.	HWD/DD/ NtPD	Pd Sheets	"	1000 ml	65	2.0	7.0	7.0	40
4.	"	Ti Rod	"	135 ml	40	2.0	1.8	0.24	1.3
5.	ACD-(i)	Pd Cylinder	0.1 M LiOD in D ₂ O	45 ml	1-2	31.3	16.6	0 75	4
6.	ACD-(ii)	Pd Ring	"	65 ml	1-3	18.1	8.8	0.57	3

Five module Pd – Ni electrolizer

Time variation of 1186 kev Gd capture gamma ray counts (Anal. Chem. divn cell

Neutron Bursts of Initial Part of Run Number 2 of Milton Roy Cell.

SAME TI ROD – RADIOGRAPH REPEATED AFTER SEVERAL MONTHS

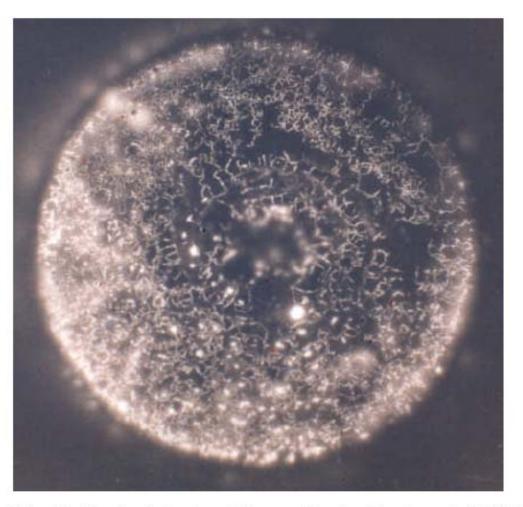


Fig. 3. Typical Autoradiograph of a Deuterated Ti Disc Showin (Black and White Reverse Image)