Studies of the Fleischmann-Pons Effect at SRI International

> Michael C. H. McKubre Director, Energy Research Center, SRI International, Menlo Park, CA.

Vice Chancellor for Research Seminar Series: Excess Heat and Particle Tracks from Deuterium-loaded Palladium *University of Missouri* Friday, May 29, 2009.

Background

- March 23rd 1989 Fleischmann and Pons reported results of: <u>an anomalous heat effect</u> resulting from the <u>extensive</u>, <u>electrochemical</u> insertion of <u>deuterium into palladium</u> cathodes over an <u>extended period of time</u> by means of electrolysis of heavy water in heavily alkaline conditions.
- This heat effect was at a level consistent with <u>Nuclear</u> but not <u>Chemical</u> energy or known lattice <u>Storage</u> effects, but occurred (*mostly*) without penetrating radiation (α, β, γ, n°) or activation (³H).
- Nuclear level heat effects have been observed in the D/Pd system with energies 100's or 1,000's times known chemical effects.
- SRI has played an important role in a number of critical areas:
 - > The measurement and importance of D/Pd loading
 - > The role of chemical additives and poisons in loading and interfacial dynamics
 - Design, construction and successful implementation of a novel, high-accuracy, fully-automated mass flow calorimeter
 - Replication studies:
 - Fleischmann Pons (Excess Heat)
 - ♦ Miles and Bush (⁴He)
 - ♦ Case (Heat and ⁴He)
 - ♦ Arata and Zhang (Heat, ³H and ³He)
 - Energetics (High level excess power and energy)

Hypothesis 1

"An unexpected source of heat can be observed in the D/Pd System when Deuterium is loaded electrochemically into the Palladium Lattice, <u>to</u> <u>a sufficient degree</u>."

Experiments:

- ✤ D/Pd Loading.
 - Electrochemical Impedance (kinetics & mechanism)
 - \triangleright Resistance Ratio R/R° (extent of loading)
- Calorimetry
 - ➢ first principles closed-cell, mass-flow calorimeter,
 - > > 98% heat recovery (99.3%)
 - ▶ absolute accuracy $< \pm 0.4\%$ (0.35%)

Loading Cell and Reactions.

Wires: 1-3 mm in dia.3-5 cm in length.

> Foils: 50 µm thick 7 x 80 mm area.

LiOD Electrolytes 0.1 – 1 Molar

Loading and Temperature coefficient of Resistance

SRI Quartz Calorimeter *and* Degree of Loading (DoL) Cell

SRI Labyrinth (L and M) Calorimeter and Cell

<u>P13/14</u> Simultaneous Series Operation of Light & Heavy Water Cells; *Excess Power & Current Density vs. Time*

SRI *FPE* **Replication**

- a) Nuclear -level heat release (1000's of eV/Pd Atom).
- b) Current threshold and linear slope.c) Loading threshold.

<u>P15</u> 1M LiOD + 200ppm Al, 3cm x 3mm Pd Wire cathode Demonstrating Significance of Surface Potential.

$$P_{In} = 12 W$$

×

M4: The Dynamics of D Flux [1]

M4: The Dynamics of D Flux [2]

M4: The Dynamics of D Flux [3]

SRI Case Replication

- a) Correlated Heat and ⁴He
- b) $Q = 31 \pm 13 \text{ MeV/atom}$
- c) Discrepancy due to solid phase retention of ⁴He.

Solid

Insulation

Helically

Wound Heating Elements

Catalyst – 1 Liter Stainless Steel Dewars

Thermowell

Thermocouple

Nupro

50cc

31655

Sampl

Flash

Vessel 1

Containing Gas Phase

and Solid Phase

Sensors

SRI Arata Replication

- 1) P_{XS} from LiOD not LiOH.
- 2) Tritium in all 5 phases (LiOD):
 - a) measured as $\partial^3 \text{He}/\partial t$ at McMaster in Phases 1-4
 - b) measured by scintillation at SRI in electrolyte
 - c) Production 2 5 x 10^{15} Atoms
- 3) No 3 He (or 3 H) in LiOH blank
- 4) ³He is the decay product of Tritium which diffused from a source inside the electrode.
- 5) 4 He not seen.

SRI Energetics (SW) Replication

- 15 experiments performed using SRI data acquisition,
- 11 (73%) produced excess heat above the 3σ experimental uncertainty*.
- Reproducibility of SW experiments is attributable to:
- high deuterium atom loading, i.
- ii. extraordinarily high interfacial flux

	Cell -	Cathode	Min.	Max.	Excess	Power	Energy
Calorimeter			R/R°	D/Pd	$\%$ of $P_{\mbox{\tiny In}}$	(mW)	(kJ)
1	9-7 E	Lot A	1.77	0.895	<5%		
2	11-8 E	L5(2)	1.67	0.915	60%	340	514
3	12-9 E	Lot A	1.84	0.877	<5%		
4	15-7 E	L5(1)	1.77	0.895	<5%		
5	16-8 E	L5(4)	1.86	0.871	<5%		
6	17-9 E	L1(1)	1.55	0.939	20%	460	407
7	21-7 E	# 830	1.92	0.836	<5%		
8	22-8 E	L5(3)	1.8	0.888	30%	200	188
9	35-7 <mark>S</mark>	L17(1)	1.32	0.985	12%	1800	553
10	35-8 <mark>S</mark>	L17(2)	0.95	1.059	13%	2066	313
11	35-9 <mark>S</mark>	L17	1.39	0.971	1%		
12	43-7 <mark>S</mark>	L14-2	1.73	0.903	80%	1250	245
13	43-8 <mark>S</mark>	ETI	1.63	0.923	5%	525	65
14	43-9 <mark>S</mark>	L14-3	1.61	0.927	1%		
15	51-7 <mark>S</mark>	L25B-1	1.55	0.939	12%	266	176
16	51-8 <mark>S</mark>	L25A-2	1.52	0.945	5%	133	14
17	51-9 <mark>S</mark>	L19	1.54	0.941	43%	79	28
18	56-7 <mark>S</mark>	L24F	1.55	0.939	15%	2095	536
19	56-8 <mark>S</mark>	L24D	1.84	0.877	4%		
20	56-9 <mark>S</mark>	L25B-2	1.56	0.937	3%		
21	57-8 <mark>S</mark>	Pd-C	N.A.	N.A.	300%	93	115
22	58-9 <mark>S</mark>	L25A	1.69	0.911	200%	540	485
23	61-7 <mark>S</mark>	L25B-1	1.63	0.923	50%	105	146
E = Energetics and $S = SRI$ Data Acquisition.							

0.85 **Time of electrolysis (hours)** 110 160 210 260 460 • Pout + Pxs \cdot %xs Pin 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.01.5 1.0 0.5 0.0 50 100 150-0.5 **Electrolysis duration (hours)**

 $-R/R^{\circ*}$

* Similar results were obtained at ENEA Frascati

Correlations

• Necessary conditions:

Maintain High <u>Average</u> D/Pd Ratio For times >> 20-50 times $\tau_{D/D}$ At electrolytic i >250-500mA cm⁻² With an imposed D Flux

(Loading) (Initiation) (Activation) (Disequilibrium)

- Heat correlated with:
 - Electrochemical current or current density
 - \blacktriangleright D/Pd loading *and/or* V_{Ref.} surface potential
 - Interfacial kinetics (flux)
 - Pd metallurgy
 - Laser stimulus

• For 1mm dia. Pd wire cathodes*:

$$P_{xs} = M (x-x^{\circ})^2 (i-i^{\circ}) |i_D|$$

x = D/Pd, x°~0.875, i°=50-400mA cm⁻², i_D=2-20 mA cm⁻², t°>20 $\tau_{D/D}$

* 50 μ m foils follow a similar equation with generally lower current thresholds.

Conclusions

Evidence was presented of new physical effects that:

produce heat in metal deuterides under extreme but closely defined conditions

 \triangleright are energetically consistent with nuclear <u>but not</u> chemical processes,

can be observed in both electrochemical and gas loading experiments,

> result in the production of ⁴He in amounts commensurate with $D + D \rightarrow {}^{4}He + \sim 24MeV$ (heat),

 \triangleright can result in the production of ³H, ~5-6 orders of magnitude less than heat and helium production.

Acknowledgements

<u>Funding Support</u>: EPRI, MITI, DARPA, DTRA

The author is also very much indebted to a group of scientists and engineers which has as a core:

Yoshiaki Arata, Les Case, Jason Chao, Bindi Chexal, Brian Clarke, Steve Crouch-Baker, Jon McCarty, Irving Dardik, Arik El Boher, Ehud Greenspan, Peter Hagelstein, Alan Hauser, Graham Hubler, Nada Jevtic, Shaul Lesin, Robert Nowak, Tom Passell, Andrew Riley, Romeu Rocha-Filho Joe Santucci, Maria Schreiber, Stuart Smedley, Fran Tanzella, Paolo Tripodi, Robert Weaver, Vittorio Violante, Kevin Wolf, Sharon Wing and Tanya Zilov.

A special thanks to Professor Duncan and the University of Missouri for their help in bringing the the light of science to bear in the gloom of ignorance.

Observations

- Effect Evidenced on numerous occasions (>70 at SRI)
- \clubsuit Up to 90 σ observation of excess power effect
- $P_{XS} > 1 kW/cm^3$ (transient)
- $P_{XS} \sim 150 \text{W/cm}^2 (1 \text{ month})$
- $\clubsuit P_{Out}/P_{In} > 50$
- $\clubsuit E_{Out}/E_{In} > 30$
- \clubsuit E_{XS} > 100 MJ
- ✤ 100 10,000 eV/ Pd Atom
- Positive Temperature Coefficient
- ✤ (Effect observed up to 650°C)