Modeling excess heat in the Fleischmann-Pons experiment

Peter L. Hagelstein¹ and Irfan Chaudhary²

¹Research Laboratory of Electronics Massachusetts Institute of Technology

²Department of Computer Science and Engineering University of Engineering and Technology, Lahore

Outline

- Energy without energetic particles
- Converting a big quantum into small ones
- Excitation transfer
- Simulating
- Conclusions

M Fleischmann et al, J Electroanalytical Chem 287 293 (1990)

E. Rutherford

 $\mathbf{p}_{1} + \mathbf{p}_{2} = \mathbf{p}'_{1} + \mathbf{p}'_{2}$ $M_{1}v_{1}^{2}/2 + M_{2}v_{2}^{2}/2 + \Delta Mc^{2} = M_{1}'(v_{1}')^{2}/2 + M_{2}'(v_{2}')^{2}/2$

Excess energy expressed as product kinetic energy

No energetic particles commensurate with energy

Only two possibilities

Nuclear energy produced without commensurate energetic particles

Is a mistake, experimentalists need to go back into the lab There is a new physical effect responsible for the observations

⁴He is observed in the gas correlated with the energy produced

- •No evidence that helium is energetic
- -Positive evidence (lack of large amounts of Pd K α x-rays) that helium is born with less than 20 keV
- •Some helium retained in cathode
- •Hinders accurate Q-value measurements

Two observations so far with stripping of ⁴He from cathode

M4 cell at SRI

Laser-3 experiment at ENEA Frascati

Lasér-4

Results in both cases consistent with Q = 24 MeV

⁴He as ash with Q=24 MeV

Mass difference between two deuterons and ⁴He:

 $M_D c^2 + M_D c^2 = M_{4He} c^2 + 23.86 \text{ MeV}$

Q-value consistent with deuterons reacting in new process to make ⁴He

Experimental input for new process

Theoretical problem

Although many more results available from experiment, we have enough so far to pose the key theory problem:

How to split up a large ΔE quantum into lots of small quanta?

The major implication of the Fleischmann-Pons experiment is that this is possible and occurs in energy production

Many-spin spin-boson model

C. Cohen-Tannoudji

 $\hat{H} = \Delta E \frac{\hat{S}_z}{\hbar} + \hbar \omega_0 \hat{a} \hat{a}^{\dagger} + V \frac{2S_x}{\hbar} (\hat{a} + \hat{a}^{\dagger})$ $\int_{\text{Indian}} \frac{1}{\sqrt{2S_x}} (\hat{a} + \hat{a}^{\dagger})$

Earlier versions of the model due to Bloch and Siegert (1940)

Coherent energy exchange

Numerical results for exchanging energy between 1700 oscillator quanta and 100 two-level systems

Thinking about toy model

Coherent multi-quantum energy exchange predicted by toy model

- •Effect is weak
- •Stringent resonance requirements
- •Can exchange up to about 100 quanta coherently
- •Exactly kind of model needed, except energy exchange effect is too weak

Improved toy model

Lossy version of model

Loss term, which allows the system to decay when a large energy quantum is available

Perturbation theory

Many paths from initial to final state, with interference between upper and lower paths

Finite basis approximation for $|n\rangle \otimes |M\rangle \rightarrow |n-5\rangle \otimes |M+1\rangle$

Perturbation theory

Loss channels available for off-resonant states with energy excess, which spoils the destructive interference

Enhancement due to loss

Lossy version of model

- Loss spoils the destructive interference
- Coherent energy exchange rates increased by orders of magnitude
- Much stronger effect
- Model capable of converting 24 MeV to atomic scale quanta

Thinking about PdD

Unfortunately, coupling is too weak because of Coulomb repulsion

Excitation transfer

Indirect evidence from experiment implicates $^{A}Z = {}^{4}He$, and theory and experiment suggest that $^{A}Z^{*}$ is a localized two-deuteron state

$$\hat{H} = \Delta E_{1} \frac{\hat{S}_{z}^{(1)}}{\hbar} + \Delta E_{2} \frac{\hat{S}_{z}^{(2)}}{\hbar} + \hbar \omega_{0} \hat{a} \hat{a}^{\dagger} - i \frac{\hbar}{2} \Gamma(E)$$

+ $V_{1} e^{-G} \frac{2S_{x}^{(1)}}{\hbar} (\hat{a} + \hat{a}^{\dagger}) + V_{2} \frac{2S_{x}^{(2)}}{\hbar} (\hat{a} + \hat{a}^{\dagger})$

This kind of model is first one relevant to experiment

Strong-coupling limit

When the coupling between the receiver-side two-level systems and oscillator is strong, then the problem simplifies

$$\Gamma \rightarrow \frac{\hbar \omega_0}{\Delta E(g)} \left| \frac{\left\langle S, M, n + \Delta n \right| \hat{H} \left| S, M + 1, n \right\rangle}{\hbar} \right|$$

When the excitation transfer step is the bottleneck, then

$$\Gamma = \frac{V_1 \sqrt{n}}{\hbar} \left(\frac{\hbar \omega_0}{\Delta E} \right) e^{-G} \sqrt{\left(S + M\right) \left(S - M\right)}$$

Coupling between nuclei and phonons

Strong force interaction matrix element expressed in terms of phonon coordinates and internal nuclear coordinates

$$M_{fi} = \iiint \Psi_{f}^{*} \left(\{ \boldsymbol{\xi}_{f} \}, \{ \boldsymbol{\sigma}_{\beta} \}, \{ \boldsymbol{\tau}_{\beta} \}, \boldsymbol{q}_{f} \right) V_{n} \Psi_{i} \left(\{ \boldsymbol{\xi}_{i} \}, \{ \boldsymbol{\sigma}_{\alpha} \}, \{ \boldsymbol{\tau}_{\alpha} \}, \boldsymbol{q}_{i} \right) \\ \times \Delta \left(\boldsymbol{q}_{i}, \boldsymbol{q}_{f} \right) \Delta \left(\boldsymbol{\xi}_{i}, \boldsymbol{\xi}_{f} \right) d \boldsymbol{q}_{i} d \boldsymbol{q}_{f} d \boldsymbol{\xi}_{i} d \boldsymbol{\xi}_{f}$$

$$\Delta (\boldsymbol{\xi}_i, \boldsymbol{\xi}_f) = \prod_{\alpha} \delta (\mathbf{r}_{\alpha}^f - \mathbf{r}_{\alpha}^i)$$

$$\Delta (\mathbf{q}_i, \mathbf{q}_f) = \delta (\mathbf{q}_i - \mathbf{A} \cdot \mathbf{q}_f - \mathbf{b}) \qquad \mathbf{q}_f = \mathbf{A} \cdot \mathbf{q}_i + \mathbf{b}$$

P. L. Hagelstein et al, Proc. ICCF14

Can we calculate it for real?

Recent work focuses on computation of phonon nuclear coupling for the simpler 3-body version of the problem $p+d \rightarrow {}^{3}He + Q$

First need wavefunctions and nuclear force model

$$E\Psi\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}\right) = -\frac{\hbar^{2}}{2M}\left(\nabla_{1}^{2}+\nabla_{2}^{2}+\nabla_{3}^{2}\right)\Psi\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}\right)+V_{n}\Psi\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}\right)$$

Simplest reasonable approximation for wavefunction

$$\Psi = \Phi_S + \Phi_{D1} + \Phi_{D2} + \Phi_{D3}$$

Full computational mesh

Example S channel wavefunction using the Hamada-Johnston potential

Simplest model for dynamics

$$\frac{d}{dt}N_{D2} + \frac{N_{D2} - N_{D2}^{0}}{\tau_{D2}} = -\Gamma_{0}\sqrt{N_{D2}N_{He}}\Theta(n - n_{thresh})$$
$$\frac{d}{dt}N_{He} + \frac{N_{He} - N_{He}^{0}}{\tau_{He}} = \Gamma_{0}\sqrt{N_{D2}N_{He}}\Theta(n - n_{thresh})$$
$$\frac{d}{dt}n + \frac{n - n_{0}}{\tau_{p}} = \gamma_{J} + \frac{\Delta E}{\hbar\omega_{0}}\Gamma_{0}\sqrt{N_{D2}N_{He}}\Theta(n - n_{thresh})$$

Molecular D₂ in lattice lost in reaction, replaced by diffusion ⁴He created in reaction, removed by diffusion Phonons produced by reaction and by deuterium flux, lost to thermalization

Where is the D₂?

No D₂ in the bulk due to occupation of antibonding sites

Conjecture that D₂ forms at vacancy sites in codeposition region near cathode surface

What oscillator modes?

Results from dual laser experiments of Letts, Proc. ICCF14 and ACS Sourcebook vol 2

Dispersion curve for PdD

L E Sansores et al J Phys C **15** 6907 (1982)

Trying out the model

+

$$\frac{d}{dt}N_{D2} + \frac{N_{D2} - N_{D2}^{0}}{\tau_{D2}} = -\Gamma_{0}\sqrt{N_{D2}N_{He}}\Theta(n - n_{thresh})$$
$$\frac{d}{dt}N_{He} + \frac{N_{He} - N_{He}^{0}}{\tau_{He}} = \Gamma_{0}\sqrt{N_{D2}N_{He}}\Theta(n - n_{thresh})$$
$$\frac{d}{dt}n + \frac{n - n_{0}}{\tau_{p}} = \gamma_{J} + \frac{\Delta E}{\hbar\omega_{0}}\Gamma_{0}\sqrt{N_{D2}N_{He}}\Theta(n - n_{thresh})$$

Example: fast He diffusion

Active region: $A = 1 \text{ cm}^2$ $\Delta r = 100 \text{ nm}$

D₂ parameters:

f[vacancy] = 0.25 $f[D_2] = 0.005$ $N[D_2] = 1.8 \times 10^{15}$ $\tau_{D2} = 2 \times 10^{-8} \text{ sec}$

⁴He parameters: $D_{He} = 1.3 \text{ x } 10^{-14} \text{ cm}^2/\text{sec}$ $\tau_{He} = \Delta r^2/D_{He} = 2.1 \text{ hr}$

Phonon mode: $f_0 = 8.3 \text{ THz}$ Q = 20

 $\begin{array}{l} \mbox{Deuterium flux:} \\ \mbox{P}_{flux} = 1 \ Watt/cm^3 \\ \mbox{n}_{thresh} = 100 \end{array}$

Basic reaction rate: $\Gamma_0 = 1/(3 \text{ hr})$

Evolution of dideuterium, ⁴He

Number of phonons

Example: slow He diffusion

Active region: $A = 0.1 \text{ cm}^2$ $\Delta r = 500 \text{ nm}$

D₂ parameters:

f[vacancy] = 0.25 $f[D_2] = 0.005$ $N[D_2] = 3.0 x 10^{14}$ $\tau_{D2} = 2 x 10^{-8} sec$

⁴He parameters: $D_{He} = 1.3 \text{ x } 10^{-14} \text{ cm}^2/\text{sec}$ $\tau_{He} = \Delta r^2/D_{He} = 53.4 \text{ hr}$

Phonon mode: $f_0 = 8.3 \text{ THz}$ Q = 20

 $\begin{array}{l} \mbox{Deuterium flux:} \\ \mbox{P}_{flux} = 1 \ Watt/cm^3 \\ \mbox{n}_{thresh} = 100 \end{array}$

Basic reaction rate: $\Gamma_0 = 1/(1.5 \text{ hr})$

Evolution of dideuterium, ⁴He

Thinking about simulations

There are several other parts to the problem:

- •Loading
- Codeposition
- •Dideuterium
- •Deuterium flux

Loading deuterium into Pd

M. Volmer

Electrochemical current density J loads 1 D per charge.

Deuterium loss from PdD

J Tafel

Deuterium on the surface combines to make D_2 gas. Rate depends on deuterium potential and the surface blocking.

Simple loading model

Electrochemical current density J determines surface loading x = D/Pd given surface coverage

$$x(R) = x[J]$$

Surface loading determined by balance between deuterium input from J, and D₂ gas release

Kunimatsu et al Proc. ICCF3 (1992)

An additional pathway

J Heyrovsky

If the chemical potential of deuterium is high, then the electrochemical current density J contains a part that deloads deuterium

Reduction of loading at high J

Electrochemical models

•S. Szpak, C. J. Gabriel, J. J. Smith, R. J. Nowak, *J. Electroanalyt. Chem.* **309** 273 (1991)

- •T. Green and D. Britz, J. Electroanalyt. Chem. 412 59 (1996)
- •W-S Zhang, X-W Zhang, H-Q Li, *J. Electroanalyt. Chem.* **434** 31 (1997)
- •W-X Chen, Int. J. Hydrogen Energy, 26 603 (2001)

...and many others

Deuterium diffusion model

Diffusion model in α - β region with flat chemical potential:

$$\frac{\partial}{\partial t}n_D = \nabla \cdot (D\nabla n_D)$$

Onsager-type diffusion model for higher loading:

$$\frac{\partial n_D}{\partial t} = \nabla \cdot \left(B n_D \nabla \mu_D \right)$$

Data available for low concentration, but little available for high loading

Chemical potential model

 $Q = \sum_{M_o} \sum_{M_T} \frac{N_o!}{M_o! (N_o - M_o)!} \frac{N_T!}{M_T (N_T - M_T)!} e^{-(M_o E_o + M_T E_T)} \qquad M = M_o + M_T$

1.1 α 1.0 β 0.9 Plate#2, 25 mA 0.8 Pd#11, 50 mA Pd#21, 800 mA Ο 0.7 0.0 0.2 0.4 0.6 0.8 AVERAGE COMPOSITION, D/Pd

E. Storms, Proc. ICCF7 p. 356 (1998)

-OPEN CIRCUIT VOLTAGE

Connection with electrochemical models

Fig. 1. Dependence of the loading ratio, x = H/Pd (D/Pd), on η_T , the overpotential of the Tafel step. $f_{H_2,0} = f_{D_2,0} = 1$ atm, T = 298 K.

W-S Zhang et al (1997)

Anodic current

Cathodic current

Conjecture that a small amount of Pd is stripped off during anodic current cycles, and then codeposited during subsequent cathodic loading [most of the Pd in solution is $Pd(OH)_4^{-2}$, Mountain and Wood (1988)]

Argument for codeposition

The elemental analysis of the surface of Pd cathodes used in Fleischmann-Pons experiments show Pt, Cu and other impurities at depths > 100 nm [Hagans, Dominguez, and Imam ICCF6 p. 249 (1996)]

Szpak experiment gives similar results with codeposition on Cu

Vacancies in host lattice

Vacancies in host metal lattice are thermodynamically favored at high loading

Pd lattice structure (fcc)

PdD lattice structure (fcc)

PdD Host lattice vacancy

Deuterium atoms relax toward host vacancy

D₂ near vacancy

Propose that molecular D₂ can occur near vacancy

- •Little in the way of discussion in literature
- •Possible to test with NMR experiments
- •Precedent in dihydrogen molecules
- •First QM computation of Me-H₂ done for Pd-H₂

Pd-H₂: $d_{PdH} = 1.67-2.05$ Angstroms $d_{HH} < 0.81$ Angstroms

Experimental verification of Pd-H₂ in low temperature experiments (1986)

G J Kubas, Metal dihydrogen and σ -bond complexes, (2001)

Palladium sigma-bonded dihydrogen

Molecular D₂ fraction

Need high loading to make vacancies during codeposition, then need high Loading for D_2 to form near the vacancies

The deuterium flux produces local heating

 $\Delta P_J = J_D \Delta \mu_D$

In an Osager formulation the current is related to the chemical potential

$$\mathbf{J} = -Bn_D \nabla \mu_D$$

The resistive power per unit volume is

$$\frac{\Delta P_J}{\Delta V} = \frac{\left|\mathbf{J}\right|^2}{n_D B}$$

Important as mechanism to stimulate optical phonon modes

Conclusions

- •Biggest theory issue is splitting big quantum into many small ones
- •Donor-receiver type spin-boson model augmented with loss proposed
- •Coupling matrix (with $U_e = 115 \text{ eV}$) estimated to be about right size
- Detailed computation in progress
- •Basic model proposed for dynamics
- •Dideuterium formation in vacancies in outer codeposited layer
- •Deuterium flux stimulates optical phonons