
## Low-Energy Nuclear Reaction Research – 2008 Update

#### Steven B. Krivit Editor, *New Energy Times* Executive Director, New Energy Institute

American Chemical Society Philadelphia, PA, August 20, 2008

### **Overview:**

- "Cold Fusion" research: Since 1989
- Krivit Investigations: Since 2000



#### **Simple Pathway to Cold Fusion:** D + D > 4He**Some Cold Fusion Theorists:** Hagelstein Chubb, S. Chubb, T. Takahashi

D+D > 3He (0.82 MeV) + n (2.45 MeV)D+D > T (1.01 MeV) + p (3.02 MeV)

D+D > 4He (0.08 MeV) + gamma ray (23.77 MeV)

D+D > 3He (0.82 MeV) + n (2.45 MeV) [~50%]D+D > T (1.01 MeV) + p (3.02 MeV) [~50%]

D+D > 4He (0.08 MeV) + gamma ray (23.77 MeV)

D+D > 3He (0.82 MeV) + n (2.45 MeV) D+D > T (1.01 MeV) + p (3.02 MeV) n:T = ~1:~1D+D > 4He (0.08 MeV) + gamma ray (23.77 MeV)

D+D > 3He (0.82 MeV) + n (2.45 MeV)D+D > T (1.01 MeV) + p (3.02 MeV)

D+D > **4He** (0.08 MeV) + **gamma ray** (23.77 MeV) n:4He = 10,000,000:1

D+D > 3He (0.82 MeV) + n (2.45 MeV)D+D > T (1.01 MeV) + p (3.02 MeV)

D+D > 4He (0.08 MeV) + gamma ray (23.77 MeV)

#### **Typical Cold Fusion Theory**

D+D > 4He + heat (lattice) (24 MeV / 4He)

D+D > 3He (0.82 MeV) + n (2.45 MeV)D+D > T (1.01 MeV) + p (3.02 MeV)

D+D > 4He (0.08 MeV) + gamma ray (23.77 MeV)

#### **LENR Experiments**

4He + heat + ? (~12- ~48 MeV / 4He)

D+D > 3He (0.82 MeV) + n (2.45 MeV) D+D > T (1.01 MeV) + p (3.02 MeV)  $n:T = \sim 1:\sim 1$  D+D > 4He (0.08 MeV) + gamma ray (23.77 MeV)n:4He = 10,000,000:1

#### **LENR Experiments**

n:T = ~1:1,000,000 4He + heat + ? (~12- ~48 MeV / 4He)

D+D > 3He (0.82 MeV) + n (2.45 MeV)D+D > T (1.01 MeV) + p (3.02 MeV)

D+D > **4He** (0.08 MeV) + **gamma ray** (23.77 MeV) n:4He = 10,000,000:1

#### **LENR Experiments**

4He + heat +? (~12- ~48 MeV / 4He) n:4He = 1:10,000,000

## The 24 MeV Belief

"The proof is the 24 MeV! McKubre nailed it"
 Scott Chubb, Naval Research Laboratory

"Haven't the [ENEA] Frascati people demonstrated a quantitatively correct correlation of exothermy with He4 yield? In fact, it was this result that turned me into a cold-fusion believer, and I suspect the same is true of many other people as well."

- Julian Brown, Oxford University

## The Experimental Evidence for Cold Fusion

**Research Group** 

MeV per Helium-4 Atom

McKubre (SRI Int'l)

13 years ago

Miles (U.S.N. China Lake) 14 years ago

De Ninno (ENEA Frascati) 6 years ago 31, 38.34, 34.45, 22.85

39, 25, 44, 88, 83, 52, 62

103, 88, 124, 103, 103

The Importance of the Normal Water Experiments

**Fusion cross-section** 

Not even "cold fusion" theorists suggest H experiments are fusion.

"If something you have been attributing to [D-D] fusion is observed with ordinary water, it means you've been fooling yourself." - Robert Park, American Physical Society

## Normal Water and Hydrogen Experiments

Patterson Miley **Bockris** Celani Mizuno Focardi - Piantelli Mills Pons **Mosier-Boss - Szpak Bush – Eagleton** Violante – Tripodi – Sarto – McKubre – Tanzella Lipson - Roussetski

## Heavy Element Transmutation Experiments

(Miley's List) Patterson Bockris Mizuno Iwamura Dash Takahashi Arata

**De Ninno** Karabut Savvatimova Chernov Dufour Jiang Yamada Kozima

## DD Thermonuclear Fusion ≠ LENR

- 1. Missing or suppressed gamma
- 2. Wrong neutron to tritium ratios
- 3. Wrong 4He to neutron ratios
- 4. Missing 1st branch of TNF
- 5. Missing 2nd branch of TNF
- 6. Weak data for "24" MeV energy

(wide range, incomplete assay)

- 7. Heavy Z transmutations
- 8. Normal water and hydrogen expts.

#### Fleischmann & Pons

## Excess Heat 4He

#### Fleischmann: "What else could it be?"

### Huizenga's 3 Miracles

#### How could it possibly be fusion?

Coulomb barrier
 No strong neutrons
 No gamma rays

## **Progress is Stunted...**

"In my opinion [LENR] has been crippled by wide acceptance of the belief that deuterium fusion of some sort is responsible for energy generation, and also by rejection of alternative [proposed] mechanisms.

"Progress is stunted when we reject a mechanism, because we then fail to undertake the experiments it suggests." - John Fisher, LENR Theorist

## Q: What Else Could it Be? A: Neutron Catalyzed Reactions (Weak Interactions)

- Hideo Kozima
- John Fisher
- George Anderman
- Lali Chatterjee
- (Tadahiko Mizuno)
- (Yasuhiro Iwamura)
- (Stanislaw Szpak)
- (Allan Widom Lewis Larsen)
  (14 MeV per 4He atom)

#### Four Years of Investigation:

### **Fusion Theories:** WEAK



**LENR** Experimental **Evidence:** 



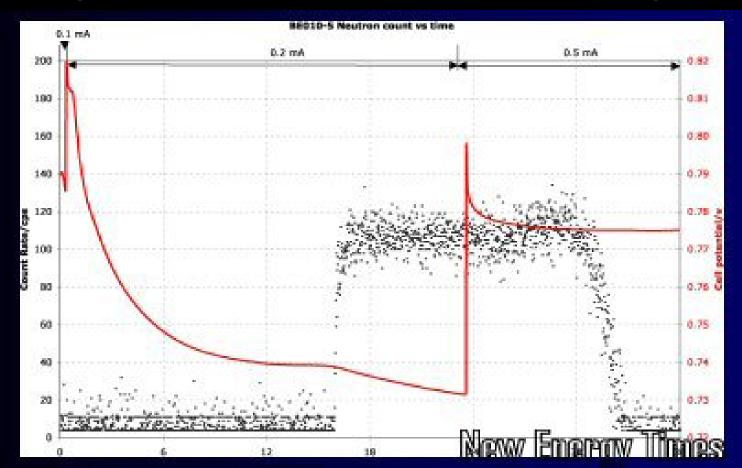
### **Nuclear Ash and Effects**

| <b>Products/Effects</b>        |                  | D/Pd |    |
|--------------------------------|------------------|------|----|
| Heat                           | Major            |      | Mi |
| Helium-4                       | Major            |      | No |
| Tritium (no heat)              | Rare but Strong  |      | No |
| (Fast? Slow?) Neutrons         | Minor but Strong |      | Mi |
| Charged Particles              | Minor but Strong |      | Mi |
| Heavy Element Transmutation    | Minor            |      | Ma |
| Gamma-Rays                     | Minor            |      | Un |
| X-Rays                         | Minor            |      | Un |
| Hot Spots on Cathodes          | Strong           |      | Un |
| Craters, Melting, Vaporization | Strong           |      | Un |
|                                |                  |      |    |

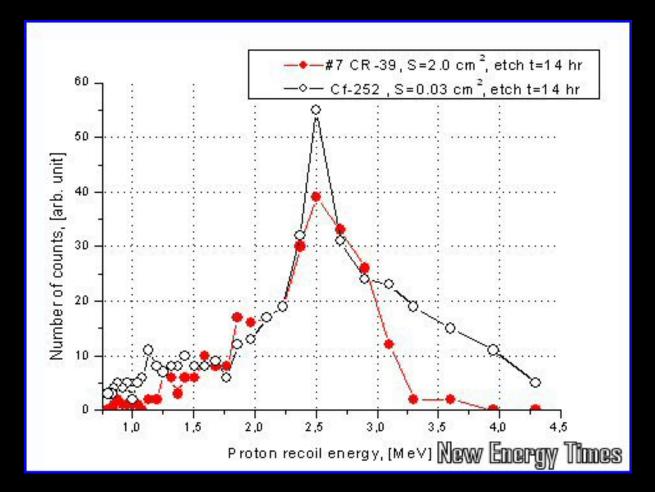
l/Pd (Ni-H) inor (Major) o (No) o (No) inor inor (Minor) ajor nknown nknown nknown nknown

Navy SPAWAR San Diego / JWK Corp. Co-deposition Experiment:

**Evidence of Neutrons Evidence of Charged Particles** 


#### **Co-deposition Experiment:**

#### **Strong Evidence of Neutrons**


Low Flux Bursty

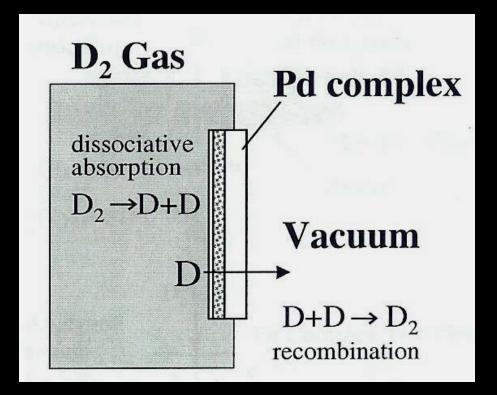
Instrument: Solid-State Nuclear Track Detectors and TASL Scanner

#### SRI Replication of SPAWAR/JWK Neutron signal 14x > than background, 14-hour burst (BF3) + cell potential drop (8<sup>th</sup> Conf. on H and D/Pd Anomalies)

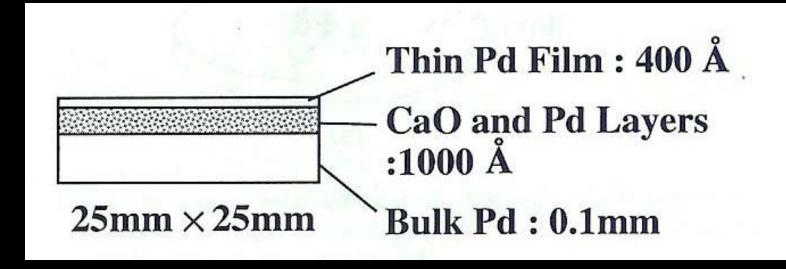


#### SRI Replication Confirmation (RAS – A. Lipson and A. Roussetski) Sequential Etching

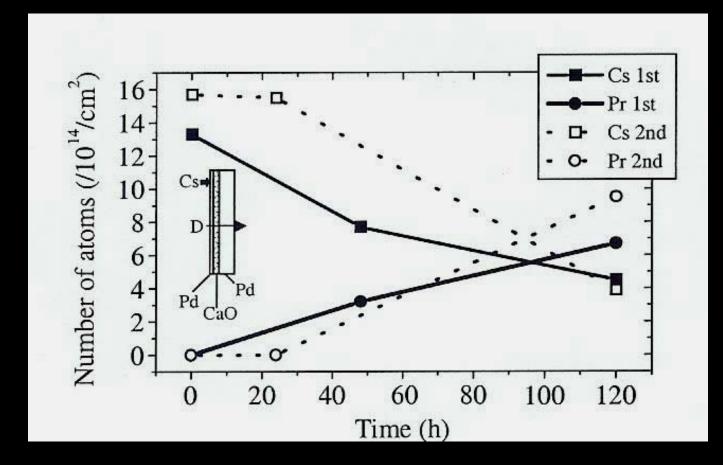



SRI Replication Confirmation (RAS – A. Lipson and A. Roussetski) Final Report

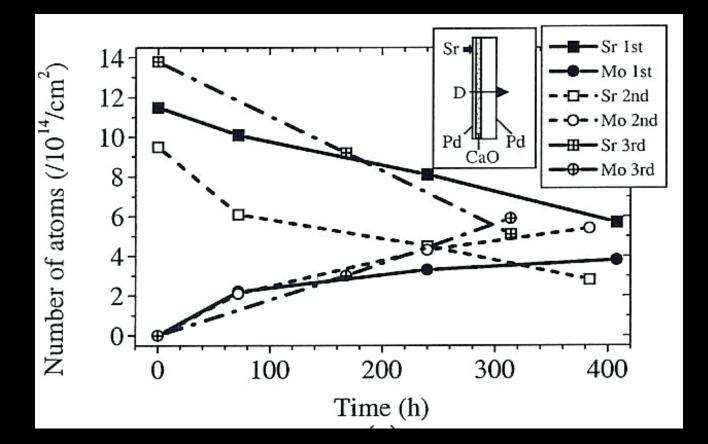
"...both sides of detector [front and back] showed that it contains <u>real</u> <u>nuclear (proton recoil) tracks.</u>


#### "Not irradiated by airport security"

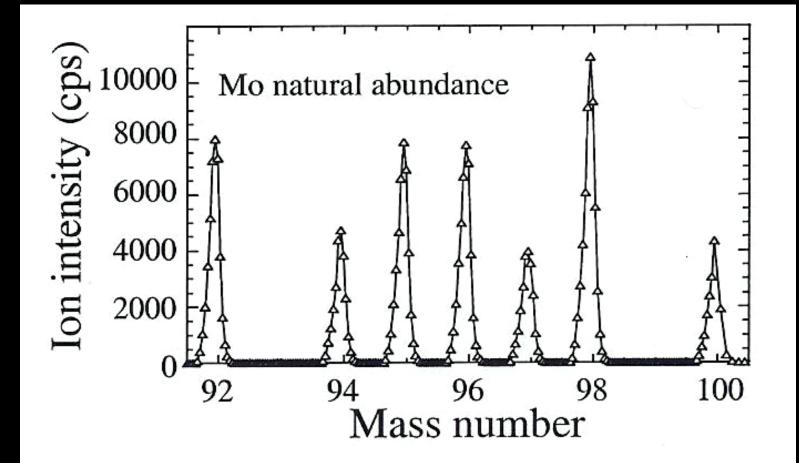
"In summary, presented experimental evidence can be considered as a <u>strong</u>, <u>unambiguous proof of #7 detector's fast</u> neutron (2.5 MeV) exposure."


#### Heavy Element Transmutation Gas Permeation (Y. Iwamura, Mitsubishi)

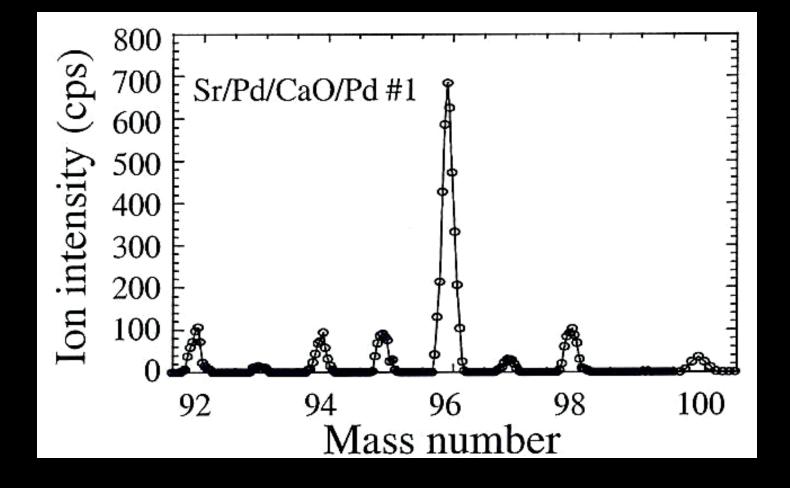



#### Heavy Element Transmutation Surface Coatings




#### Heavy Element Transmutation Pr Grows while Cs Decreases




#### Heavy Element Transmutation Mo Grows while Sr Decreases



#### Heavy Element Transmutation Natural Isotopic Abundance



#### Heavy Element Transmutation Anomalous Isotopic Abundance



## **Selected Excess Heat Claims**

| Ref | Name          | Year | Max.Excess<br>Heat | % Excess<br>Heat | Time       | Excess<br>Energy |
|-----|---------------|------|--------------------|------------------|------------|------------------|
| 1   | Arata         | 1999 | 10w                | No data          | 2000h      | No data          |
| 2   | El-Boher #56  | 2004 | 3.5w               | 80%              | 300h       | 3.1 Mj           |
| 2   | El-Boher #64a | 2004 | 34w                | 2500%            | 17h        | 1.1 Mj           |
| 2   | El-Boher #64b | 2004 | 32w                | 1500%            | 80h        | 4.6 Mj           |
| 3   | Focardi       | 1994 | 18                 |                  | 319 D      | 600 Mj           |
| 3   | Focardi       | 1994 | 72                 |                  | 278 D      | 900 Mj           |
| 4   | Stringham     | 2004 | 40w                | No Data          | No<br>Data | No Data          |
| 5   | Takahashi     | 1992 | 130w               | 70%              | 1440h      | No Data          |

See appendix A for references

### **Reasons for Commercial Interest**

- Presence of heat, helium, tritium
- Absence of Greenhouse Gases
- Absence of Strong Prompt Radiation
- No Long-Lived Nuclear Waste

# LENR Energy – What is Known

- LENR works with deuterium and hydrogen
- Works with palladium, nickel, titanium
- High energy density (higher than U-fission)
- Environmentally-friendly

LENR Energy – Pending Questions:

- Will LENR pose security risks?
- Will it scale?
- Will it replace liquid fuels?
- What will it cost?

When will it reach application?

## New Energy Times Magazine www.newenergytimes.com

steven1@newenergytimes.com



1. Arata, Yoshiaki, Zhang, Yue-Chang, "Anomalous production of gaseous 4He at the inside of 'DS cathode' during D2O-electrolysis," Proc. Jpn. Acad., Ser. B, 75: p. 281 (1999) http://newenergytimes.com/Library/1999ArataY-AnomalousProduction.pdf

2. El Boher et al., "Excess Heat In Electrolysis Experiments At Energetics Technologies," (to be published Proceedings of 11th International Conference on Cold Fusion, Marseilles, France, 2004) http://newenergytimes.com/Library/2004ElBoher-ExcessHeatInElectrolysis.pdf

3. Campari, E., Focardi, S., Gabbani, V., Montalbano, V., Piantelli, F., and Veronesi, S., "Overview of H-Ni Systems: Old Experiments and New Setup," 5th Asti Workshop on Anomalies in Hydrogen- / Deuterium-Loaded Metals, Asti, Italy, (2004)

4. Stringham, R., "1.6 MHz Sonofusion Device," (to be published Proceedings of 11th International Conference on Cold Fusion, Marseilles, France, 2004) http://newenergytimes.com/Library/2004StringhamR-1.6MHzSonofusion.pdf

5. Takahashi, A., et al., "Anomalous Excess Heat by D2O/Pd Cell Under L-H Mode Electrolysis," Third International Conference on Cold Fusion, Nagoya, Japan: Universal Academy Press, Inc., Tokyo, Japan. (1992) http://newenergytimes.com/Library/1992TakahashiAAnomalousExcessHeat.pdf