Analysis of Nuclear Particles from Independent Replications Using the SPAWAR Co-Dep TGP Protocol and CR-39 Track Detectors

W. Williams¹, L.P.G. Forsley², F.L. Tanzella³, P. Mosier-Boss⁴,
 N. Robertson⁵, H. Saito⁵, J. Yurkovic⁵, S. Zakskorn⁵, X⁶

¹UC Berkeley, Berkeley, CA USA
²JWK Technologies Corporation, Annandale, VA USA
³SRI International, Menlo Park, CA USA
⁴SPAWAR Systems Center, San Diego, CA USA
⁵UC San Diego, San Diego, CA
⁶University of Anonymity, USA

Replicators

- SPAWAR Systems Center San Diego, CA, USA
- UC Berkeley, Beverly, CA, USA
- UC San Diego, CA USA
- SRI International, Menlo Park, CA USA

SPAWAR Co-Dep Protocol TGP Protocol

- PdCl₂, LiCl, D₂O co-dep electrolysis
- Low current operation until all Pd plated out, solution becomes clear
- A few days to a week
- Higher current, 100 mA to 500 mA
- Run for up to 1 week
- No calorimetry
- Different labs used different measurements, different times
 - I,V
 - X-rays or gamma rays
 - Neutron counter (BF₃ REMBALL)
- All labs used CR-39:
 - different vendors had different quality!

Why Many Laboratories Failed to Reproduce the Fleischmann-Pons Effect

D₂ is loaded into the Pd electrode over a several day period

- Improper cell configuration
 - Cathode was not fully immersed in the heavy water
 - Asymmetrical arrangement of anode and cathode
- Unknown history of the palladium cathodes used in the experiments
- Lack of recognition that an incubation time of weeks was necessary to produce the effect

Another Way to Conduct the Experiment: Pd/D Co-deposition

As current is applied, Pd is deposited on the cathode. Electrochemical reactions occurring at the cathode:

$$Pd^{2+} + 2 e^- \rightarrow Pd^0$$

 $D_2O + e^- \rightarrow D^0 + OD^-$

The result is metallic Pd is deposited in the presence of evolving D₂

External E and/or B Field Reactors

Why use an integrating detector?

- You lose all temporal information, but
 - You integrate with a permanent record
 - Ideal for low count rate experiments
- Can be calibrated for both charge and mass
 - Spectral resolution!
 - The faster the particle the smaller the track
 - The greater the charge the larger the track
- Spatial information as to where the track occurred, allowing comparison with external features and relate track features to one another spatially and spectrally. Detector is 1 cm x 2 cm to 2.5 cm x 2.5 cm.

TASL Automated Scanner

http://www.tasl.co.uk/systems.htm

TASL CR-39 Scanning

- Magnification 200x
- Manual focus
- Field of view
 - 500 microns (y) by 600 microns (x)
- Typical scan
 - 17,500 microns in y
 - 7,500 microns in x
 - Total of 440 frames/side to 600 frames/side
 - 880 to 1200 frames per "chip"

Calibration and "A Cluster"

- B field experiment
- Back side exposed to depleted uranium
- Front side in contact with the cathode

SPAWAR B-Field, Clustered Particle Generation

Clustered particles, away from cathode

raw

processed

identified

²³⁴U, ²³⁸U Background, away from cathode

Clustered Particle Quantitative Analysis

Clustered particles, away from cathode

²³⁴U, ²³⁸U Background, away from cathode

333 tracks in one frame

Berkeley Chip #2 towards cathode, 7022 tracks, whole chip

away from cathode, 1694 tracks, whole chip

Chemical Damage?

- Experiment carried out with a 6 micron thick mylar window
- CR-39 outside the cell, never in contact with electrolyte

SPAWAR Dry Co-Deposition

No contact between CR-39 and cell electrolyte. Tracks not caused by chemical or mechanical damage!

Computer identified Computer processed

Neutrons?

Front and Back Surface Comparison

Particle track locations for 3 wire E-field "wet". Front faces the cathode and back is away from cathode.

Scan, 1 mm by 20 mm

Pt, Ag, Au tracks on front. Pt and Au tracks on back. *No tracks from Ag on back!*

Neutron Track Size

long axis (^µm)

CR-39 n efficiency 10⁻⁴ - 10⁻⁶ tracks/n

n tracks caused by knock-ons with CR-39 ($C_{12}H_{18}O_7$) atoms:

¹H, ¹²C, ¹⁶O

 $n_e > 12$ MeV will break ¹²C into α particles, leaving a "triple" track.

These α particles will have little momentum and won't move.

Uniform number of knock-ons throughout CR-39 thickness due to low neutron stopping power.

Track size function of n energy, n_e.

Adjacent plots show n_e range from 1.2 MeV to 19 MeV.

^{1,2} Phillips, *et. al.*, "Neutron Spectrometry Using CR-39 Track Etch Detectors", *14th SSD*, 2004.

Large Number of Neutrons Produced

Neutrons produced by conventional Nuclear reaction from ²³⁸PuO.

Neutrons produced by Co-Dep reactions.

SPAWAR

BE010-5 CR-39 (Fukuvi Chips)

14.2 µm

UCSD 2007

What's going on?

- It appears that we have evidence of a ¹²C nucleus, present in the CR-39, shattering!
- A typical reaction, seen in ICF (laser fusion) using DT fusion, will result in a 14.1 MeV neutron.
- There are various thresholds above 8 MeV for neutrons that will result in various ways for the ¹²C to "shatter".
- Above 12 MeV results in 3 alphas, with all of the neutron kinetic energy making up for the mass deficit, by E=mc², between ¹²C and 3 alphas.
- The alphas go a very short distance: additional evidence that the neutrons aren't more energetic!

- Are there really neutrons?

SRI Real Time Neutron Counting Be-10-5

Neutron Counts and Input I/V

SRI BE-10-5 and BE-10-6 towards cathode

34,254 tracks

47,413 tracks

No BF₃ neutron signal seen, radiator present

Conclusion

- Each of groups saw particles
- The SPAWAR protocol provided a replicable and reliable means of producing nuclear particles.
- On Chip calibration of CR-39 critical
 - Prefer Russian solution using accelerator driven proton, deuteron, triton and alphas
 - Neutron calibration with monochromatic sources
 - DD,DT electrostatic fusion generators (2.2 MeV, 14.1 MeV)
- Many questions, including:
 - Discrepancies between with some Russian analysis
 - Determine quantitative agreement with other Russia analysis.
- Origin of small, < 1 micron, tracks
 - Background?
 - Optical diffraction in TASL?
 - Experimental "noise"?
 - High energy proton (> 10 MeV?)

Acknowledgments

- Thanks to each of the groups participating in the TGP project
- The Galileo Project support from New Energy Times
- JWK Corporation
- US Navy SPAWAR

Real Physics!

• The significance of a physics paper is directly proportional to the number of authors times the number of words:

S=AW, where A =number of authors and W is number of words in article

- Each picture worth 10,000 words.
- These slides have 28 pictures,
- $S = 9x(10^4x28) = 2.52 \times 10^6$