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The process of radiation induced electron capture by protons or deuterons producing new ultra
low momentum neutrons and neutrinos may be theoretically described within the standard field
theoretical model of electroweak interactions. For protons or deuterons in the neighborhoods of
surfaces of condensed matter metallic hydride cathodes, such conversions are determined in part
by the collective plasma modes of the participating charged particles, e.g. electrons and protons.
The radiation energy required for such low energy nuclear reactions may be supplied by the applied
voltage required to push a strong charged current across a metallic hydride surface employed as a
cathode within a chemical cell. The electroweak rates of the resulting ultra low momentum neutron
production are computed from these considerations.
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I. INTRODUCTION

Excess heats of reaction have often been observed to
be generated in the metallic hydride cathodes of certain
electrolytic chemical cells. The conditions required for
such observations include high electronic current densi-
ties passing through the cathode surface as well as high
packing fractions of hydrogen or deuterium atoms within
the metal. Also directly observed in such chemical cells
are nuclear transmutations into elements not originally
present prior to running a current through and/or prior
to applying a LASER light beam incident to the cath-
ode surface[1–6]. It seems unlikely that the direct cold
fusion of two deuterons can be a requirement to explain
at least many of such observations[7]. In many of these
experiments heavy hydrogen atoms were initially absent.
For simplicity of presentation, we consider “light water”
chemical cells in which deuterons are not to any appre-
ciable degree present before the occurrence of heat pro-
ducing nuclear transmutations.

Nuclear transmutations in the work which follows are
attributed to the creation of ultra low momentum neu-
trons as well as a neutrinos. Electrons are captured by
protons all located in collectively oscillating “patches” on
the metallic surface. Since the energy threshold for such
a reaction is

Qin ≈ {Mn − (Mp +m)} c2 ≈ 0.78233 MeV, (1)

one requires a significant amount of initial collective radi-
ation energy to induce the proton into neutron conversion

(radiation energy) + e− + p+ → n+ νe. (2)

The radiation energy may be present at least in part due
the power absorbed at the surface of the cathode. If V de-
notes the voltage difference between the metallic hydride
and the electrolyte and if J denotes the electrical current

per unit area into the cathode from the electrolyte, then
the power per unit cathode surface area dissipated into
infra-red heat radiation is evidently

P = VJ = eVΦ̃, (3)

wherein Φ̃ is the flux per unit area of electrons exiting
the cathode into the electrolyte. Typical metallic hy-
dride cathodes will exhibit soft surface photon radiation
in much the same physical manner as a “hot wire” in a
light bulb radiates light. For the case of chemical cell
cathodes, there will be a frequency upward conversion
from virtually DC cathode currents and voltages up to
infrared frequency radiation. Such an upward frequency
conversion requires high order electromagnetic interac-
tions between electrons, protons and photons.

The purpose of this work is to estimate the total rates
of the reaction Eq.(2) in certain metallic hydride cath-
odes. The lowest order vacuum Feynman diagram for
the proton to neutron conversion is shown in FIG. 1. For
the case of the reactions in metallic hydrides, one must
include radiative corrections to FIG. 1 to very high order

FIG. 1: A low order diagram for e− + p+ → n + νe in the
vacuum is exhibited. In condensed matter metallic hydrides,
the amplitude must include radiative corrections to very high
order in α.



in the quantum electrodynamic coupling strength

α =
e2

4π�c
≈ 7.2973526× 10−3. (4)

The W-coupling in terms of the weak rotation angle θW

will be taken to lowest order in

αW =
g2

4π�c
=

α

sin2 θW

. (5)

Charge conversion reactions are weak due to the large
mass MW of the W±. The Fermi interaction con-
stant, scaled by either the proton or electron masses, is
determined[8, 9] by

GF ≈ παW√
2

(
�c

M2
W

)
,

GFM
2
p

�c
≈ 1.02682× 10−5,

GFm
2

�c
≈ 3.04563× 10−12. (6)

In the work which follows, it will be shown how the
weak proton to ultra low momentum neutron conversions
on metallic hydride surfaces may proceed at appreciable
rates in spite of the small size of the Fermi weak coupling
strength.

An order of magnitude estimate can already be derived
from a four fermion weak interaction model presuming
a previously discussed[10] electron mass renormalization
m → m̃ = βm due to strong local radiation fields. Sur-
face electromagnetic modes excited by large cathode cur-
rents can add energy to a bare electron state e− yielding
a mass renormalized heavy electron state ẽ−, with

m̃ = βm. (7)

The threshold value for the renormalized electron mass
which allows for the reaction Eqs.(1) and (2) is

β > β0 ≈ 2.531. (8)

For a given heavy electron-proton pair (ẽ−p+), the tran-
sition rate into a neutron-neutrino pair may be estimated
in the Fermi theory by

Γ(ẽ−p+)→n+νe
∼

(
GFm

2

�c

)2 (
mc2

�

)
(β − β0)2,

Γ(ẽ−p+)→n+νe
∼ 9 × 10−24

(
mc2

�

)
(β − β0)2,

Γ(ẽ−p+)→n+νe
∼ 7 × 10−4 Hz × (β − β0)2, (9)

If there are n2 ∼ 1016/cm2 such (ẽ−p+) pairs per unit
surface area within the first few atomic layers below the
cathode surface, then the neutron production rate per
unit surface area per unit time may be estimated by

�2 ≈ n2Γ(ẽ−p+)→n+νe
,

�2 ∼
(

1013 Hz
cm2

)
× (β − β0)2. (10)

FIG. 2: The four fermion vertex for e− + p+ → n + νe in the
vacuum is exhibited. In the large MW limit, the Feynman
diagram of FIG. 1 collapses into the above Feynman diagram.
In condensed matter metallic hydrides, the resulting effective
W± fields are defined in Eqs.(11) and (37).

Significantly above threshold, say β ∼ 2β0 ∼ 5, the esti-
mated rate �2 ∼ 1013 Hz/cm2 is sufficiently large so as
to explain observed nuclear transmutations in chemical
cells in terms of weak interaction transitions of (ẽ−p+)
pairs into neutrons and neutrinos and the subsequent ab-
sorption of these neutrons by local nuclei.

In Sec.II, an exact expression is derived for the emis-
sion rate � per unit time per unit volume for creating
neutrinos. It is then argued, purely on the basis of con-
servation laws, that � also represents the rate per unit
time per unit volume of neutron production. The rate
�, in Sec.III, is expressed in terms of composite fields
consisting of charged electrons and opposite charged W-
bosons. The effective W-bosons for condensed matter
systems may be written to a sufficient degree of accuracy
in terms of Fermi weak interaction currents

I+
μ = c

(
ψ̄nγμ(gV − gAγ5)ψp

)
,

I−
μ = c

(
ψ̄pγμ(gV − gAγ5)ψn

)
, (11)

wherein the Dirac matrices are defined in Sec.II, ψp and
ψn represent, respectively, the proton and neutron Dirac
fields and the vector and axial vector coupling strengths
are determined by

λ ≡ gA

gV
≈ 1.2695,

cos θC ≡ gV ≈ 0.9742, (12)

wherein θC is a strong interaction quark rotation angle.
In Sec.IV, the electron fields as renormalized by metallic
hydride surface radiation are explored and the effective
mass renormalization in Eq.(7) is established.

In Sec.V the nature of the neutron production is dis-
cussed in terms of isotopic spin waves. In the limit
in which the protons and neutrons are non-relativistic,
one may view the proton and neutron as different iso-
topic spin states of a nucleon[11] with the charged pro-
ton having an isotopic spin +1/2 and with the neutron
having an isotopic spin −1/2. If n(r) and p(r) repre-
sent, respectively, the two (real) spin component fields



for non-relativistic neutrons and protons, then the oper-
ator isotopic spin density T(r) =

(
T1(r), T2(r), T3(r)

)
of

the many body neutron-proton states may be written

T1(r) =
1
2

(
p†(r)n(r) + n†(r)p(r)

)
,

T2(r) =
i

2
(
n†(r)p(r) − p†(r)n(r)

)
,

T3(r) =
1
2

(
p†(r)p(r) − n†(r)n(r)

)
,

T ±(r) = T1(r) ± iT2(r). (13)

In the non-relativistic limit, these isotopic spin operators
determine the time-component of Fermi weak interaction
currents in Eq.(11) via

I∓ 0(r) ≈ cgV T ±(r). (14)

The remainder of the non-relativistic weak currents are
of the Gamow-Teller variety[12] and require the true spin
as well as isotopic spin version of Eq.(14); i.e. with S =
σ/2 as the Fermion spin matrices, the combined spin and
isotopic spin operator densities are

S1,j(r) =
(
p†(r)Sjn(r) + n†(r)Sjp(r)

)
,

S2,j(r) = i
(
n†(r)Sjp(r) − p†(r)Sjn(r)

)
,

S3,j(r) =
(
p†(r)Sjp(r) − n†(r)Sjn(r)

)
,

S± j(r) = S1,j(r) ± iS2,j(r). (15)

In the non-relativistic limit for the protons and neutrons,
the spatial components of the weak interaction currents
in Eq.(11) are

I∓ j(r) ≈ −cgAS±
j (r). (16)

Altogether, in the nucleon non-relativistic limit

I∓ μ ≈ c
(
−gAS±

1 ,−gAS±
2 ,−gAS±

3 , gV T ±)
. (17)

The isotopic formalism describes the neutron creation as
a surface isotopic spin wave. Out of many oscillating
protons in a surface patch, only one of these protons will
convert into a neutron. However, one must superimpose
charge conversion amplitudes over all of the possibly con-
verted protons in the patch. This describes an isotopic
spin wave localized in the patch with wavelength k−1.
The wavelength in turn describes the ultra low momen-
tum p ∼ �k of the produced neutron. Finally in the
concluding Sec.VI, further numerical estimates will be
made concerning the weak interaction production rate of
such neutrons.

II. NEUTRINO SOURCES

The conventions here employed are as follows: The
Lorentz metric ημν has the signature (+,+,+,−) so that
the Dirac matrix algebra may be written

γμγν = −ημν − iσμν wherein σμν = −σνμ. (18)

The chiral matrix γ5 is defined with the antisymmetric
symbol signature ε1230 = +1 employing

1
4!
εμνλσγ

μγνγλγσ = iγ5 (19)

and chiral projection matrices are thereby

P± =
1
2

(1 ∓ γ5) . (20)

Further algebraic matrix identities of use in the work
below, such as

γλγμγσP± = ±hλμσνγνP± ,

hλμσν = iελμσν − ηλμησν + ηλσημν − ημσηλν , (21)

all follow from Eqs.(18), (19) and (20).
The average flux of left handed electron neutrinos (pre-

sumed massless) is determined by

Fμ(x) = c 〈ν̄(x)γμP+ν(x)〉 . (22)

Initial state averaging in Eq.(22) is with respect to a
chemical cell density matrix

〈. . .〉 ≡ Tr ρ (. . .) ,

ρ =
∑

I

pI |I〉 〈I| . (23)

The mean number of neutrinos created per unit time per
unit volume may be computed from the four divergence
of the neutrino flux; i.e.

�(x) = ∂μFμ(x). (24)

Let us now argue, purely from standard model conserva-
tion laws, that � is also the mean number of neutrons
created per unit time per unit volume within the metallic
hydride cathode in a chemical cell.

If a neutrino is created, then lepton number conserva-
tion dictates that an electron had to be destroyed. If an
electron is destroyed, then charge conservation dictates
that a proton had to be destroyed. If a proton is de-
stroyed, then baryon number conservation dictates that
a neutron had to be created. Thus, the rate of neutrino
creation must be equal to the rate of neutron creation. It
is theoretically simpler to keep track of neutrino creation
within the cathode.

The neutrino sinks and sources, respectively η̄ and η,
are defined by that part of the standard model action
which destroy and create neutrinos; i.e.

Sint = �

∫
(η̄(x)ν(x) + ν̄(x)η(x)) d4x. (25)

The neutrino field equations are thereby

−iγμ∂μν(x) = η(x),
i∂μν̄(x)γμ = η̄(x). (26)



Eqs.(22), (24) and (26) imply the neutrino creation rate
per unit time per unit volume at space-time point x has
the form

�(x) = 2c
m 〈η̄(x)P+ν(x)〉 . (27)

Introducing the retarded massless Dirac Green’s func-
tion,

−iγμ∂μS(x− y) = δ(x− y), (28)

allows us to solve the neutrino field Eqs.(26) in the form

ν(x) = νin(x) +
∫
S(x− y)η(y)d4y, (29)

wherein νin(x) represents the asymptotic incoming neu-
trino field. The assumption of zero initial background
neutrinos is equivalent to the mathematical statement
that the neutrino destruction operator ν+

in(x) |I〉 = 0 for
the initial states in Eq.(23). In such a case, Eqs.(27) and
(29) imply

�(x) = 2c
m
∫

〈η̄(x)P+S(x− y)η(y)〉 d4y. (30)

The retarded massless Dirac Green’s function may be
found by looking for a solution of Eq.(28) of the form

S(x− y) = iγμ∂μΔ(x− y). (31)

From Eqs.(28) and (31) it follows that

−∂μ∂
μΔ(x− y) = δ(x− y). (32)

The retarded solution to Eq.(32) requires the step func-
tion

ϑ(x− y) = 1 if x0 > y0,

ϑ(x− y) = 0 if x0 < y0; (33)

In detail

Δ(x− y) =
ϑ(x− y)

2π
δ
(
(x− y)2

)
. (34)

Eqs.(30) and (31) imply

�(x) = 2c�e
∫

〈η̄(x)P+γ
μη(y)〉 ∂μΔ(x− y)d4y,

�(x) = 2c�e
∫

Δ(x− y) 〈η̄(x)P+γ
μ∂μη(y)〉 d4y. (35)

The neutron production rate � per unit time per unit
volume can thus be computed in terms of the neutrino
sinks η̄ and sources η.

III. COMPOSITE CHARGED FIELDS

The neutrino sinks and sources of interest in this work
can be written in terms of the composite fields of charged

electrons and charged effective condensed matter W±-
bosons; i.e.

η(y) =
1√
2
γσW+

σ (y)P+ψ(y) ,

η̄(x) =
1√
2
ψ̄(x)P−γλW−

λ (x) , (36)

in which ψ and ψ̄ are the Dirac electron fields and

W+
σ (y) =

(
2�GF

c4

)
I+

σ (y) ,

W−
λ (x) =

(
2�GF

c4

)
I−

λ (x) . (37)

The weak interaction proton-neutron charged conver-
sion currents I±

μ are defined in Eq.(11). In Feynman
diagram language, the amplitude pictured in FIG.1 has
been replaced via a field current identity of the Fermi
four field point interaction in FIG.2. Eqs.(35) and (36)
imply

�(x) = c �e
∫

G(x, y)Δ(x − y)d4y, (38)

wherein

G(x, y) =〈
W−

λ (x)ψ̄(x)γλγμγσP+∂μ

(
ψ(y)W+

σ (y)
)〉

=

hλμσν
〈
W−

λ (x)ψ̄(x)γν∂μ

(
P+ψ(y)W+

σ (y)
)〉
. (39)

The neutron production rate � per unit time per unit
volume implicit in Eqs.(34), (38) and (39) may be con-
sidered to be exact.

IV. ELECTRON MASS RENORMALIZATION

When the reacting charged particles e− + p+ → n+ νe

are in the presence of surface plasmon radiation, then the
external charged lines (incoming wave functions) must
include the radiation fields to a high order in the quantum
electrodynamic coupling strength[13] α. The situation is
shown in FIG.3. To see what is involved, recall how one
calculates the density of states for two particles incoming
and two particles outgoing:
Case I: The Vacuum The density of states may be written
as the four momentum conservation law,∫

ei(S0++S0−−S0n−S0ν)/�d4x =

(2π�)4δ(p+ + p− − pn − pν), (40)

wherein p+, p−, pn and pν represent, respectively, the
four momenta of the proton, electron, neutron and neu-
trino. For a particle of mass m in the vacuum, the action
S0(x) obeys the Hamilton-Jacobi equation

∂μS0(x)∂μS0(x) +m2c2 = 0,
S0(x) = p · x ≡ pμx

μ. (41)



FIG. 3: In the presence of electromagnetic surface radiation,
the charged particles in weak interaction must be described
by wave functions which include to high order in α the effects
of the electromagnetic fields. For the reaction at hand, both
the proton and the electron react to surface radiation. The
resulting mass renormalization is stronger for the electronic
degrees of freedom than for the proton degrees of freedom.
The density of states including radiation is computed em-
ploying Eqs.(43) and (44).

Case II: Radiation If the reaction takes place in the pres-
ence of electromagnetic radiation,

Fμν = ∂μAν − ∂νAμ, (42)

the density of states conservation of four momenta must
also include the electromagnetic radiation contribution;
i.e.

�e
∫
ei(S++S−−Sn−Sν)/�d4x =

(2π�)4δ̃(p+, p−, pn, pν), (43)

wherein, for a charged particle, the Hamilton-Jacobi
equation reads[14]

mvμ(x) = ∂μS(x) − e

c
Aμ(x),

vμ(x)vμ(x) + c2 = 0. (44)

Therefore, in the density of states Eq.(43) including ra-
diation the full solution of the Hamilton-Jacobi equation
must be solved for all of the charged particles in the inter-
action. This constitutes the physical difference between
the diagrams in the vacuum shown in FIG.2 and includ-
ing radiation shown in FIG.3. The mass renormaliza-
tion may be understood by averaging the local momen-
tum pμ = ∂μS over local space time regions. Presuming
pμAμ = 0 we have on average that

−pμpμ = m2c2 +
(e
c

)2

AμAμ ≡ m̃2c2. (45)

The mass renormalization parameter in Eq.(7) is then
given by

β =

√
1 +

( e

mc2

)2

AμAμ . (46)

Since the electron mass is much less than the proton
mass, m � Mp, the main effects on low energy nuclear
reactions are due to the mass renormalization of the sur-
face electrons[10].

From the viewpoint of classical physics, the Lorentz
force on a charge equation of motion,

mc
dvμ

dτ
= eFμνvν , (47)

is reduced to first order via the Hamilton-Jacobi Eq.(44),
according to

dxμ

dτ
= vμ(x). (48)

From the viewpoint of quantum mechanics, there is a one
to one correspondence between quantum solutions of the
Dirac equation and the classical solutions of Hamilton-
Jacobi equation. In detail, the Dirac equation in an ex-
ternal radiation field,

−i�γμ
{
∂μ − i

( e

�c

)
Aμ(x)

}
ψ(x) +mcψ(x) = 0, (49)

may be subject to a non-linear gauge transformation
employing the solution to the classical Hamilton-Jacobi
equation,

ψ(x) = eiS(x)/�Ψ(x). (50)

The resulting radiation renormalized wave function obeys

γμ (−i�∂μ +mvμ(x)) Ψ(x) +mcΨ(x) = 0. (51)

It is worthy of note in the quasi-classical limit � → 0
that the solution to the charged particle wave Eq.(51) is
reduced to algebra.

V. NEUTRONS AND ISOTOPIC SPIN WAVES

The sources of the neutrinos are inhomogeneous in spa-
tial regions near the surfaces of cathodes. Also, the neu-
trinos are so weakly interacting that after emission they
are virtually unaware of the condensed matter. The neu-
trino on energy shell phase space Qν = (Q, |Q|) has the
Lorentz invariant phase space

dLQ =
[

d3Q
2(2π)3|Q|

]
. (52)

Writing the neutrino emission part of Eqs.(38) and (39)
as the phase space integral

�(x) = −c 
m
∫ ∫

eiQ·(x−y)hλμσνQμ ×
〈
W−

λ (x)ψ̄(x)γνP+ψ(y)W+
σ (y)

〉
d4ydLQ

= −4c
(

�GF

c4

)2


m
∫ ∫

eiQ·(x−y)hλμσνQμ ×
〈
I−

λ (x)ψ̄(x)P−γνψ(y)I+
σ (y)

〉
d4ydLQ . (53)



Under the assumption that the initial proton spins are
uncorrelated and that the free neutron density is dilute,
considerable simplification can be made in estimating the
rather daunting but rigorous Eq.(53). The estimate for
the inhomogeneous ultra low momentum neutron pro-
duction rate per unit volume is

�(x) ≈
(

�GF

c3

)2 (
2mc2

�

)
(g2

V + 3g2
A) ×

�e
∫ ∫

eiQ·(x−y)
〈
T +(x)ψ̄(x)ψ(y)T −(y)

〉
d4ydLQ,(54)

wherein Eq.(17) has been invoked.
If the neutrons are dilute, then it is sufficient to con-

sider the creation of a single neutron from a proton, i.e.
the propagation of the W± within condensed matter.
What is left of the heavy W± boson is merely an iso-
topic spin wave. There is a superposition of amplitudes
summed over all the possible protons within a patch
which may be converted into a neutron. The isotopic
spin wave creation and annihilation operators in the sur-
face patch obey

T ±(x) ≈ T ±(x)e∓i(cΔM)x0/� (55)

with the neutron-proton mass difference determining the
threshold value of the electron mass m renormalization
parameter β i.e.

ΔM = Mn −M = β0m. (56)

For the creation of a single ultra low momentum neutron
from non-relativistic protons

〈
T +(x)ψ̄(x)ψ(y)T −(y)

〉
⇒

δ(x − y)e−i(cΔM)(x0−y0)/� ×〈
p†(x)ψ̄(x)ψ(y)p(y)

〉
. (57)

For steady state production rates, Eq.(54) reads

��(r)
mc2

≈ 2
(

�GF

c3

)2

(g2
V + 3g2

A) ×

�e
∫ ∫

ei(c2ΔM+�c|Q|)t/� ×
〈
p†(r)ψ̄(r)ψ(r, t)p(r, t)

〉
(cdt)dLQ. (58)

Explicitly exhibiting the neutrino energy being radiated
away in Eq.(2), yields

��(r)
mc2

≈ 1
2π2c2

(
�GF

c3

)2

(g2
V + 3g2

A) ×

�e
∫ ∞

0

∫ ∞

−∞
ei(c2ΔM+�c|Q|)t/� ×

〈
p†(r)ψ̄(r)ψ(r, t)p(r, t)

〉
(cdt)(ωdω). (59)

The remaining correlation function in Eq.(58) de-
scribes how an electron which finds itself directly on top

of a proton propagates in time. The integral over time
may be written

�e
∫ ∞

−∞

〈
p†(r)ψ̄(r)ψ(r, t)p(r, t)

〉
eiEt/�dt

= 2π�N (r)ne(r, E), (60)

wherein N (r) is the mean density per unit volume of
protons and ne(r, E) is the mean collective density per
unit volume per unit energy of electrons which sit directly
on the protons.

The steady state inhomogeneous production of neu-
trons per unit time per unit volume �(r) as estimated in
Eq.(59); i.e. exhibiting the radiated neutrino energy �ω,

�(r) ≈ mc2

π�

(
�GF

c3

)2

(g2
V + 3g2

A)N (r)K(r),

K(r) =
�

c

∫ ∞

0

ne(r, E = c2ΔM + �ω)ωdω, (61)

wherein ne(r, E) must be calculated including the sur-
face radiation energy and the driving current through
the cathode.

The calculation of K depends on the detailed physical
properties of the cathode surface as well as the flux Φ̃
per unit area per unit time of electrons determining the
chemical cell current as in the power Eq.(3). In the most
simple model, let us consider a smooth surface with ma-
terial properties and electron currents determining the
neutron creation rate via the mass renormalization pa-
rameter β as defined in Eq.(46). We note in passing
that a smooth surface is not likely to be the best sur-
face for producing neutrons since rough surfaces have
patches wherein the surface plasma electromagnetic field
oscillations will be more intense. However, the following
smooth surface model will be employed for estimating
the proper low energy nuclear reaction rates produced
by electroweak interactions.

To compute the density of surface electron states per
unit area per unit energy, one may begin with a simple
renormalized electron mass m∗ model and take

g2(E) = 2
∫
δ
(
E −

√
c2p2 + (m∗c2)2

) d2p
(2π�)2

, (62)

i.e.

g2(E) =
E

π�2c2
. (63)

If such surface electron states are confined to a wave func-
tion width l normal to the surface, then we have within
the surface region, and after integrating over the emitted
neutrino energy spectrum

K ≈ �

lc

∫
g2(E = β0mc

2 + �ω)ωdω,

K ≈ 1
2πl

(mc
�

)3

(β − β0)2. (64)



For a smooth surface, integrating the neutrino produc-
tion rate over a thin slab at the electrode surface yields
the estimate for the production rate per unit time per
unit area,

�2 ≈
(
g2

V + 3g2
A

2π2

)
n2

(
GFm

2

�c

)2
mc2

�
(β − β0)2. (65)

The above Eq.(65) for smooth surfaces is in agreement
with the initial order of magnitude estimate in Eqs.(9)
and (10).

VI. CONCLUSIONS

Electromagnetic surface plasma oscillation energies in
hydrogen-loaded metal cathodes may be combined with
the normal electron-proton rest mass energies to allow for
neutron producing low energy nuclear reactions Eq.(2).
The entire process of neutron production near metallic
hydride surfaces may be understood in terms of the stan-
dard model for electroweak interactions. The produced
neutrons have ultra low momentum since the wavelength
is that of a low mode isotopic spin wave spanning a sur-
face patch. The radiation energy required for such ultra
low momentum neutron production may be supplied by
the applied voltage required to push a strong charged
current across the metallic hydride cathode surface. Al-

ternatively, low energy nuclear reactions may be induced
directly by laser radiation energy applied to a cathode
surface.

The electroweak rates of the resulting ultra low mo-
mentum neutron production are computed from the
above considerations. In terms of the radiation induced
mass renormalization parameter β in Eqs.(7) and (8), the
predicted neutron production rates per unit area per unit
time have the form

�2 = ν(β − β0)2 above threshold β > β0. (66)

The expected range of the parameter ν for hydrogen-
loaded cathodes is approximately

1012 Hz
cm2

< ν < 1014 Hz
cm2

(67)

in satisfactory agreement with the orders of magnitude
observed experimentally. More precise theoretical es-
timates of ν require specific material science informa-
tion about the physical state of cathode surfaces which
must then be studied in detail. As discussed in previous
work[10], a deuteron on certain cathode surfaces may also
capture an electron producing two ultra low momentum
neutrons and a neutrino. The neutron production rates
for heavy water systems are thereby somewhat enhanced.
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