This presentation was given at the March APS meeting in Los Angeles, Calif, March 24, 2005. Published by www.newenergytimes.com.

Search for Radiation Signals from Electrolytic Cells

Dennis Cravens Cloudcroft, NM 88317 Southern Christian University

All data are preliminary A work in progress

- Calorimeter 125 liter tank temperature rise of water
- Temperature of room tracks water temperature with a 60 minute delay.
- Approximately 1 degree per hour at 100 W (easy signal to see)
- 4 inches (Styrofoam insulation)
- Active insulation panels set for outer panels to track temp of inner panel to -0.1 degree to prevent heat movement.

Typical Cell

- Heavy water
- Sulfamic acid as electrolyte (H2NSO3H)
- Pt plated Ta screen anode formed to max current density at point of cathode
- Plated W cathode
- Cathode point about 0.01cm² area to electrolyte
- Very high current densities (10 amps for about 1000A/cm^2)
- Use of "doped" plating (example Sm with large n cross section)

Cell configuration

Radiation – gamma/charge ions

- No neutrons yet found above background (counts about 1 to 2, lab at 9000 feet)
- Possibly 1.5 sigma gammas when cell is in pulse mode (just enough to be uncertain)
- Nothing seen with DC and constant current
- Possible signal when first turned on (noise?)

Tank fitted with photocells

- Hexagonal tank (35 gallon aquarium)
- Photocells placed in series around sides
- Foil lined outside and light tight (when view port closed)
- View port 5 panels with air gaps
- Can check time of light emission after pulse of power to cell (about 10 ms)
- Can check glow half life after turn off
- (order of 5 ms)

Photocell on back wall

Tank half full (floating balls to reduce surface loss) – reflective interior – view through open view port

Large tank

- All insulation but primary, active panels and outer wrap remove
- Active mixing
- 5 point temp averages
- Measure heat rise over 5 to 10 hours
- Good for 100 to 500 W range of day runs
- Simple- only time and temp needed for output

Glowing cell

- Cell glows with "eerie" glow light through out the electrolyte.
- Color only checked with simple color filer wheels – about 500nm +/- 25nm
- Light maximum at higher V than "excess power"
- "Sparkles" about 400 to 1000 Hz
- Typical input power levels 80 to 150 W

Cell at 10 A

Electrical signals

- Power factor shifts prior to "excess heat" production
- Power factor on 60 to 500 Hz may change from 1.0 to 0.3 (about)
- Greatest "excess" seen with smallest power factor
- Excess not yet greater than that expected if the power factor measures were totally wrong.
- RF emissions in the 10 to 40 MHz

Factors to help in seeing "excess heat"

- Use of proprietary plating (involves addition of spin exchange agents, lattice spacing)
- At higher current densities (on the order of 1000A/cm^2)
- Higher input frequencies (order of 500 to 20K Hz)
- Shorter duty cycles (5 to 10 %)
- At shift of power factors to below 0.5
- Running at currents just below or at "turn on" of blue light emission.
- Using H or D as only positive ions after plating.

The Future

- Use of spectrophotometer to ID wavelengths
- Use of "exotics" in plating
- Use of spherical D2O+BeSO4 tank for n multiplication (now in preparation)
- Higher Voltage
- Use of CR39 alpha checks
- Use of gamma spectrum (when funded?)

"Preparing to have a Ball"

- Target BeSO4 in D2O (100g/liter)
- Be taken from old golf clubs (Cu+ Be)
- D2O from 15 years of CF experiments
- Ball will be contained in borax +wax and below ground level
- Ball next to constant temp flow system

Thanks

- Dennis Cravens
- Dennis @ tularosa.net
 - Cloudcroft, NM
 - "un-funded work" just for fun
 - Patent pending on some undisclosed items
 - Work now shifted from 1 to 10 W range to 100 W range
 - Still in calibration mode for tank system heat measurements – but very promising, easy at this power level.