Progress on the Study of Isotopic Composition in Metallic Thin Films undergone to Electrochemical Loading of Hydrogen

M.Apicella⁽¹⁾, E. Castagna⁽²⁾, G. Hubler⁽⁴⁾, M. McKubre⁽³⁾, <u>F.Sarto⁽¹⁾</u>, C.Sibilia⁽²⁾, A. Rosada⁽¹⁾, E. Santoro⁽¹⁾, F. Tanzella⁽³⁾, V. Violante⁽¹⁾

- (1) ENEA C.R. Frascati, V. le E. Fermi 45 00044 Frascati (Roma) Italy
- (2) La Sapienza University, Via Scarpa, 14 00100 (Roma) Italy
- (2) SRI International 333 Ravenswood Ave, Menlo Park CA 94025 USA
- (3) Naval Research Laboratory, 4555 Overlook Ave., S.W. Washington, DC USA

Experiments on thin films at ENEA

Film deposition Hydrogen loading SIMS analysis

Results

Preliminary results Further investigations

- Questions
- Conclusions

Experiments on thin films at ENEA

 Reference and active Nickel films are deposited during the same deposition run

• The active film is loaded with H by *electrolysis*

 Reference and electrolysed films *isotopic composition* is analysed by Secondary Ions Mass Spectrometry (SIMS) *to search deviations from the natural abundances (traces of nuclear processes)*

FILMS DEPOSITION

<u>Substrate</u>

- Polyethylene substrate
- Class 1000 lab
- Chemical cleaning

Reduction of contaminants

lon Beam Etching

- Strong adhesion to plastic substrate
- Surface roughness

Good film surface status after electrolysis

Ni Film sputtering

- 6 samples per runs
- 99.98% purity Ni target
- thickness 450 Å

Identical reference and active films

Films Deposition Details

Rotating Sample Holder (6 identical locations)

Film Surface morphology (by Atomic Force Microscopy)

Dual Ion beam Sputtering plant

HYDROGEN LOADING

- Pure Polyethylene (Kartell)
- Pure Pt (99.98) wire
- Light water (18MΩ) LiSO₄ solution
- 3-40 hours
- Current = 5 190 mA
- Voltage = 3 7 V

Photo of the electrodes

Electrolytic Cell

SIMS analysis

- SIMS technique
- Isotopic shift measurements
- Depth profile
- Active & reference in the same analysis conditions

Secondary Ion Mass Spectrometry (SIMS)

- Very suitable technique to reveal small traces of surface elements or compounds (not quantitative)
- Very accurate measurements of isotopic ratio
- Dynamic SIMS allows depth profile of elements/compounds concentration

Leybold SSM200-Mass Spectrometer Module

Leybold IQE 12/38 ion source and Balzers Quadrupole Mass Analyzers with ion optics

Primary beam

heavy ions [Ar⁺], spot $\emptyset \approx 2mm$, I \approx 0.5-2 μ A, E=1-5 KeV, 45°

- **Emergent particles:** Positive and negative ions
- Mass range: m/e≥1 [0-511 a.m.u.]
- **Resolution:** 0.5 a.m.u.
- **Sensitivity:** 10¹² at/cm² (0.1% of 1 atomic monolayer)

<u>SIMS</u> Equipment

Leybold SSM200-Mass Spectrometer Module at ENEA Frascati Lab. (Italy)

Reference and electrolyzed films are loaded together into the analysis chamber and positioned at 180 ° on a cylindrical support and analyzed in series under the same SIMS conditions.

Previous results (ICCF9)

<u>Neutron Activation Analysis</u> (NAA- ENEA Casaccia, Italy) of Nickel thin films indicates evidence of *isotopic shift* on *Ag* contaminant.

	Ni1b	Ni2b
Ag107	<0,019	<0,034
Ag109	0.025	0.06
Shift Ag%	29.37	47.39

Our SIMS signals on Ag masses are too low to obtain useful information on the isotopic shift

Preliminary Results

SIMS analysis on Ni thin films indicates an apparent isotopic shift on the 63/65 Cu masses (*Cu has these only two isotopes!*)

Electrolysed film:

The Cu⁶³/Cu⁶⁵ isotopic ratio strongly differs from the natural value (2.25): $Cu^{63}/Cu^{65} \cong 0.12 \pm 0.12$

SIMS spectrum of reference film

the tuning of the instrumentation was checked by moving the argon beam on the stainless steal sample-holder where the Cu isotopic composition was always the natural one.

SAMPLE	Film STATUS after	APPARENT IS	OTOPIC SHIFT
	electrolysis	Electrolysed	Reference
Ni 1bis	Ok	YES	NO
Ni 3bis	Ok	YES	NO
Ni P2	Ok	YES	NO
Ni P3	Ok	NO	NO
Ni 4	Ok	YES	NO

These new results add to the previous ones already shown (ICCF10): 3/5 experiments giving evidence of apparent isotopic shift

SIMS scanning of the sample surface

- The SIMS analysis has been carried out on different points of the sample surface.
- The effect is more relevant in the middle of the sample
- SIMS spot dimension ≅ 2mm

Ni1bis scanned surface map

SIMS spectrum of Ni1bis electrolysed, in the middle of the sample

Questions

<u>Mass interferences on 65 m/e signal?</u>

Our SIMS resolution is about 100 (m/ δ m), not enough to resolve different peaks with the same nominal mass

- 1. Double ionised atoms
- 2. Organic contaminants (giving 65 mass fragments)
- 3. $Ni^{58}Li^7$ due to Li_2SO_4 electrolyte
- 4. Ni⁶⁴H compound

Mass interferences on 65 m/e signal? Double ionised atoms?

No signal is observed from 130 atomic mass (Te¹³⁰, Ba¹³⁰), which could give a 65 m/e signal when double ionised.

Mass interferences on 65 m/e signal? Organic contaminants ?

- > 65 mass $C_5H_5^+$ ion is very reactive, but it could be produced during the SIMS analysis by fragmentation of higher mass organic molecules (hydrocarbons).
- Typical spectra of hydrocarbon contaminants show groups of odd mass peaks with 12 a.m.u. periodicity (due to 1 C atom increment in the chain fragment)

12	13	14	(15)
27	29		
39	41	43	
51	53	55	57
63	65	67	69

References:

SIMS technical report by RIBER Instrumentation Ultra-vide, France

Integrated Spectral Data Base System for Organic Compounds by National Institute of Advanced Industrial Science & Technology, SDBSWeb: http://www.aist.go.jp/RIODB/SDBS/

Organic Compound Database by Harold M. Bell at Virginia Tech., http://www.colby.edu/chemistry/cmp/cmp.html

SIMS spectrum of electrolysed samples

Fragmentation pattern of organic contaminants is not observed

- > 15, 43, 69 masses are not detected
- 51, 53, 55, 57 masses are masked by isotopes of clearly identified elements, present also in the reference sample (V⁵¹, Cr⁵³ 53, Mn⁵⁵, Fe⁵⁷)

Organic contaminants (continue)?

From the polymeric substrate?

 SIMS depth profile shows that the 65 signal is not correlated with the increase of the ¹²C when the interface between the film and the substrate is reached.

Mass peak ratio	On the surface	Close to the substrate
Ni58/C12	35 ± 2	8.1 ± 0.5
Ni58/mass65	65 ± 6	49 ± 16

From the electrolyte?

• Gas cromatography analysis of the electrolyte shows that organic contaminants are less than 1ppb.

From the surface?

 The blank sample has beem immersed for 2 days in iso-octane to remove organic contaminants eventually adsorbed on the surface.
Gas cromatography analysis of the liquid did not reveal any organic contaminant down to 1ppb.

Mass interferences on 65 m/e signal?

Ni⁵⁸Li⁷ due to Li₂SO₄ electrolyte?

- Despite of NiLi is not a stable compound however Li is detected on the film surface after electrolysis by SIMS.
- Ni⁶⁰Li⁷ and Ni⁵⁸Li⁷OH, Ni⁶⁰Li⁷OH mass peaks should be observed together the Ni⁵⁸Li⁷ signal.

In our SIMS spectrum 65, 67 and 82, 84 mass peaks are present, which can be associated to the Ni⁵⁸Li⁷, Ni⁶⁰Li⁷ and Ni⁵⁸Li⁷OH, Ni⁶⁰Li^{7OH} compounds.

The ratio between these peaks intensity turns out to be equal to the natural isotopic ratio of Ni⁵⁸ and Ni⁶⁰

Ni ⁵⁸ Li ⁷ / Ni ⁶⁰ Li ⁷	2.0±0.5
Ni ⁵⁸ Li ⁷ OH/ Ni ⁶⁰ Li ^{7OH}	2.5±0.5
Ni ⁵⁸ /Ni ⁶⁰	2.71±0.01
Ni ⁵⁸ /Ni ⁶⁰ nat.	2.60

<u>Ni⁵⁸Li⁷ due to Li₂SO₄ electrolyte?</u> (continue)

but

The isotopic ratio of the compound related to the Li⁷, Li⁶ isotopes (Ni⁵⁸Li⁷/Ni⁵⁸Li⁶) does not match the natural value, but it cannot be determined with enough accuracy due to the Ni⁶⁴ contribution to the 64 mass peak.

Some samples have been electrolysed but have not shown the 65-mass extra signal

Contribution to the 65 mass peak from Ni⁵⁸Li⁷ ion cannot be excluded.

Mass interferences on 65 m/e signal? Ni⁶⁴H compound?

Ni⁶⁴H (65mass) detection is unlikely because the isotopic ratio Ni⁶²H (63 mass) / Ni⁶⁴H (65 mass) of Ni isotopes does not match the natural value (3.9): the observed results goes into the opposite direction!

<u>CONCLUSIONS</u>

- Previous NAA results revealed isotopic shift for Ag contaminant in Ni electrolysed films.
- Preliminary results gave evidence of an apparent isotopic shift on the Cu masses (65 too high) in Ni hydrogenated films

<u>but</u>

- All possible interpretations of the experimental data <u>must</u> be considered in order to get certain results
- The system complexity and the very small size of the foreseen effects requires suitable and very high performance experimental apparatus
- Cross matched analysis are necessary to get completely convincing conclusions

Towards a deeper understanding

In the present experiment, something more for the next:

- Ultra-high resolution SIMS apparatus ($\delta m \le 0.02$, m/ $\delta m > 3000$)
- Test experiments by changing the electrolyte (for ex. NaOH)
- Cross matched analysis by other methods (for ex. Nuclear Activation Analysis)

Aknowledgements

The authors thank Dr. K. Grabowski and Dr. M. Melich for the important help received on this matter.

Calculated cross section for different nuclear reaction

By NOT-SMOKER web database by Prof. Thomas Raucher.

TOF-SIMS analysis at ETH

- A couple of reference and active samples have been also analysed by TOF-SIMS at ETH, to check our results.
- Cs⁺ primary, negative secondary ions
- Cu63/Cu63 isotopic ratio after calibration of data with a standard:

Electrolysed sample: Cu63/Cu65 = **2.40±0.31** *Reference* sample: Cu63/Cu65 = **1.79±0.02**

Lateral Position Spectra

Peak in gate PRE7: ⁶⁵Cu Peak in gate PRE7B: ⁶³Cu

Peak around channel 550: mass 64, ⁶⁴Ni

Sample 2, Ni 1 bis

Mass interferences on 65 m/e signal?

Ni⁵⁸Li⁷ due to Li₂SO₄ electrolyte?

- Despite of NiLi is not a stable compound however Li is detected on the film surface after electrolysis by SIMS.
- Evidence of PdNa⁺ compound comes from reference SIMS spectra of standard samples (by RIBER). The PdNa⁺ mass peaks are coupled with the presence of PdNaOH⁺ and PdNaO⁺ mass signals.
- NiLi⁺ formation is possible because Ni and Li belong to the same groups of Pd and Na respectively on the periodic table of the elements.

