Clean Fusion and Fission

Aktio TAKAHSHI Osaka University

September 23, 2004

Civilization and Energy Problem

Source	Resource (Q)	Pollution	Power Density	Plant Size	Locality	Capital	Reality
Solar Cell	Infinite	Large surface	Weak	Small	Yes	Large	Yes
Wind/ Hydro	Infinite	Large surface	Small	Mod	Yes	Mod	Yes
Oil/Gas Coal	<mark>60</mark> 200	CO ₂ , SOx NOx	Modera te	Mod	Yes	Mod Large	Yes
Fission LWR FBR Fusion	50 300 300	LLFP MA Accident LLFP	Large Large	Large LL	Mod Mod	Large LL	Yes ? ?
Cold Fusion	Infinite	Clean	Large	Small	None	Small	?????

Fusion of Hydrogen Isotopes

- $H + H \longrightarrow D + \beta^+ + \nu$: Weak Interaction, Star
- H + D \longrightarrow ³He + γ + 5.5 MeV : Star
- D + D $\rightarrow {}^{4}\text{He} + \gamma + 23.8\text{MeV}; 10^{-5}\%$ $\rightarrow p + t + 4.02\text{MeV} ; 50\%$ $n + {}^{3}\text{He} + 3.25\text{MeV} ; 50\%$
- $D + T \longrightarrow n + {}^{4}He + 17.6MeV$: hot fusion
- D + Li, P + Li, P + B, etc.

Major Experimental Results of CF Research suggest us

- "COLD FUSION" of known fusion reactions by hydrogen isotopes is NOT the Case.
- We should consider NEW NUCLEAR REACTIONS in Condensed Matter.

Fusion by D₂OElectrolysis ? Fleischmann-Pons (1989)

Excess Heat, without neutrons

D + D \rightarrow n + ³He + 3.25 MeV D + D \rightarrow p + t + 4.02 MeV

Excess Heat; McKubre, SRI (1992-2003)

100 % reproducible for D/Pd = 1

[Excess Heat] depends on current density , D/Pd ratio and D-flux

Weak Neutron Emission, A.Takahashi, Osaka U.: JNST, 27 (1990)663

Recent n-emission data by Jones, and Mizuno (2004)

NEWSWEEK October 15,2001

above droops e of convolution he more distant ous reletantt it is n." sats Vivian National Soci-And the less that Grandma but not whether (which can be re likely caused mant). shure, share andated family jent that should members," says p relatives with mple, Knowing y the gyne for met, incurable c) may make a adopt children in bear them or Amor eggs ur Doen if there isn't there still might style decisions," frinklatt. me risks are

nic roso an huic. Six percent of Addaemaric Jews carry a gene mutation that can lead toecolon cancer. One in 12 Abicon Americans

Pining for a Breakthrough

Despite years of ostracism, a small and dwindling army of cold-fusion faithful are ever hopeful

BY GREGORY BEALS whith years ago researchers at the University of Utah chimed to have found a cheap and cary way of producing energy from that fusion energy can really be harnessed on a tabletop.

The idea of cold fusion is so elegant and appealing that it's difficult for many to resist. Fusion reactions occur when two hydrogen

A believer: Takahashi saya if he doem't get good readts in two years, he'll retire

with chemicals, and you've got fission without the need for so much as a Bunsen burner. To many researchers, the upside is so large-limitless, cheap energy-that it may he obscuring their objectivity. "Because of the potentially high payoff, there are certainhypeople who are willing to cling to their belief in cold fusion even though the evidence is to the contrary," says Al Tiech of the American Association for the Advancement of Science. "Once you commit yourself to an idea, it's hand to give it up," Many researchers relish the role of outsider. "You can either work maintaining the edifice of scientific understanding or you can simply ask questions of the universe," says physicist Elichi Yamaguchi, a fellow at the 21st Century Public Policy Institute in Tokyo, "Researching cold fusion makes me feel a lot like Galileo." And since cold fasionists have claimed only to have produced minute amounts of energy, they can initionalize their ambiguous results. by reflecting that many valid experimentaalso ride on tiny measurements.

Cold fusionists pay a price for this stabbornness. Aligo Takahashi, a physicist at Osaka University, has spent more than a decade on cold fusion. Now he has trouble getting research money and attracting graduate stadents. "Other professors attack me from various sides," he says. "Sometimes they call me directly and tell me to immediately stop my cold-fusion work." Akino Yamaguchi has had fanding repetition and can build on the istry of ECOOD ande an build on confunding for cold fusion in 1998. Fusding peers

After Miles, Arata, McKubre, De Ninno, ⁴He was Detected; Isobe, et al. Osaka U. : JJAP, 41(2002)1546

Vitamura at al Vahal

 $Au/Pd 試料へのD_2^+ 照射$

 D_2^+ irradiation of Au/PdD_x samples.

More than 500 times enhancement of dd fusion

D-Beam Enhances 3D-Fusion if CF DD Fusion is Stimulated

A. Takahashi, et al., ICCF10, 2003 D-Beam Energy Dependence of [3D]/[2D] Ratios

- [3D]/[2D] Yield Ratios by Experiment are in the order of 1E-4 to 1E-3.
- Increasing trend in lower energy region than 100 keV may result in indirect 3D reactions.
- Theoretical values by the conventional Random Nuclear Reaction Theory has given [3D]/[2D] ratio to be in the order of 1E-30
- Experiment shows 1E+26 anomalous enhancement.

Anomalous enhancement of DDD fusion was confirmed

Selective Transmutation by Iwamura et al. (MHI): JJAP, 41(2002)4642

D permeation through Pd complex ¹³³Cs to ¹⁴¹Pr H permeation through Pd complex NO CHANGE

Reproduced at Osaka U., and many times at MHI

Major Claims by Experiments

1) Excess Heat with ⁴He Generation

Miles, Arata, McKubre, Gozzi, Isobe • De Ninno, Celani

2) Very Weak Neutrons Generation

Takahashi, Jones, and so on

•Mizuno

3) Anomalous Enhancement of D-Fusion

Kitamura, Kasagi, Takahashi,

Huke

4) Selective Transmutations

Iwamura, Mizuno, Miley, Ohmori, •Celani

Is Reproducibility Improved?

• Excess Heat:

100% by D/Pd ratio GE. 1.0

Nuclear Products:

By nano-scale modification of Pd surface, nano-particle,

stimulation with Laser, Ultra-Sonic,

Plasma-Discharge, etc.

Problems in Theorization

- How to construct a Consistent Theory which can explain anomalous results (heat with ⁴He, scarce neutrons, selective transmutation) systematically.
- New Theory must be compatible to already established physics.

Theoretical Modeling

 Possible Mechanism to Exceed;

d+

• $\lambda dd = 10^{-60} f/s/cc$

e-

 $R_{dd} = 0.7$ angstrom

• for D₂ Molecule

d+

- How is the condition
- $R_{dd} \ll 0.7$ angstrom possible to enhance λdd ?
- cf: 1 watt = 10¹² (f/s/cc) for d-d reaction
- R_{dd} = 2 angstrom for PdD ground state

Possibility of Super-Screening of Coulomb Barrier is looked for

- Transient or Dynamic Conditions in PdDx
- Overcome Thomas-Fermi gas limitation for Coulomb screening by electrons
- Transient "Bosonization" (Quasi-Particle State) of electrons to play a role for Super Screening
- Lattice Focal Points; sites, deffects,

D + D → He-4 + lattice energy(23.8MeV) by the QED energy transfer from nuclear excited state (He-4*: 23.8MeV) to lattice phonons.

IS NOT POSSIBLE !

Arata-Fujita-Zhang used 5nm diam. Pd nano-crystals which contained about 8,000 Pd-atoms per a nano-Pd-particle. If 23.8MeV nuclear excited energy of He-4* were transferred to share in lattice phonons of a nano-particle, each Pd-atom in a nano-particle of Pd should have had about 3 keV phonon (lattice vibration) energy, which was 100 times greater than Pd-atom-displacement energy(20-40 eV) from lattice. There are of course no such high energy phonons in lattice vibrations. Over the displacement energy, all lattice atoms are evaporated and solid statephysics does not make sense there. To receive 23.8MeVenergy by lattice phonons of coherent domain, we need more than one-million (1000,000) lattice atoms which make crystal size greater than 30 nm in diameter (or 25x25x25 nm cubic).

This means that the presumed QED energy transfer from nuclear to lattice was impossible in the condition of Arata-Fujita's experiment.

Classical View of Tetrahedral Symmetric Condensation (TSC)

Basic Mechanism will be:

- Tetrahedral Symmetric Condensation (TSC):
 - 4 deuterons + 4 electrons make a transient Bose-type condensation by 3-dimensionaly constraint squeezing motion
- Octahedral Symmetric Condensation (OSC):

for 8 deuterons + 8 electrons, also possible

The Place where TSC is born?

- 1)In Natural Gas-Phase of D₂ (H₂): Very small probability for two D₂(H₂) molecules to make orthogonally coupled state.
 - \rightarrow Possible at very low temperature?

(Bose-Einstein Condensation)

- 2)In Surface-Lattice conditions: O(T)-Sites, Defect/Void, Fractal-surface(adatom +dimer + corner-hole)
 - → (Dynamic Bose Condensation of TSC)

Speculated Mechanism-1:

1) D-Cluster Resonance Fusion in Lattice and Products

a) 23.8 MeV ⁴He-Particles by 4D Fusion

b) 47.6 MeV ⁸Be-Particles by 8D fusion

2) Transmutation by Secondary Reactions

2-1) $M(A,Z) + {}^{4}He \longrightarrow M(A+4,Z+2)$, Fission, etc.

2-2) $M(A,Z) + {}^{8}Be \longrightarrow M(A+8,Z+4)$, Fission, etc.

Speculated Mechanism-2:

a) Selected Channel Fission Model

Model Check by ²³⁵U + n Fission Application to A<200 Nuclei Pd, W, Au

b) Estimation for Fission Products

Mass Distribution Element Distribution Isotopic Ratios Radioactivity

: Comparison with Claimed Experimental CF Data

OUTLINE-1 : D-Cluster Fusion

Transient D-Cluster Condensation in PdDx Lattice

Transient Quasi-Particle State of Electrons (e*) and DDe* State Potentials to Realize Super-Screening for Fusion

Resonance Multi-Body Fusion: 3D, 4D, 8D to Produce ⁴He and Mass-8 & Charge-4 Increased Transmutation

D-Cluster Formation in PdD Transient Dynamics by Phonon Excitation

Phonon Excitation by Laser

- Dielectric Response Function of Metal:
- (Classical Drude-Model for free electron gas)
- $\varepsilon(\omega) = 1 (\omega_p \tau)^2 / (1 + (\omega \tau)^2)$

•
$$\approx 1 - (\omega_p / \omega)^2$$

- with $\omega_p = (4 \pi \text{Ne}^2/\text{m})^{1/2}$: plasma frequency
- which is over UV region (1E+15 (1/s))
- 100 % penetration by $\omega > \omega_{\rm P}$

•EUV-Laser irradiation can excite phonons inside bulk metal!

Tetrahedral Condensation of D-Cluster

Some FC Pd omitted

Transient Bose Condensation of Deuterons

From O-site to T-site

Associating Transient Squeezing (Bosonozation) of 4d-shell Electrons

Generation of Short-Life Quasi-Particle e* like Cooper-pair

D-Cluster as Mixture of DDe, DDee, DDe*, DDe*, DDe*, DDe*e*

Tetrahedral Condensation of Deuterons in PdDx

Classical View of Tetrahedral Condensation

Transform from 3-dim to 2-dim for TCC

IN Tetrahedral "coherent" Condensation (TCC),

Sum Momentum Vectors (red) for two deuterons become mirrorsymmetric in each other on a line,

So that 3-dim TCC is transformed to 2-dim squeezing problem

Two-Dimensional View of Transient D-Condensation

Lattice Phonon + Plasmon (d⁺+ e⁻)

Generation of e* by Transient Pairing of Electrons (k↑, -k♦)

Overcome Femi-Gas Limitation (Pauli exclusion) for d-d screening

Superposition of dde, ddee, dde* and dde*e* Transient Molecular States

Combination Probability for TEQP Generation

Broken lines show pairing of spin-and-momentum-reversed electrons in Tetrahedral Coherent Condensation <Cooper Pair> = 12/16

< Quadru Coupling> = 2/16

<No Pair> = 2/16

2-dimensional View of Tetrahedral Condensation

• Symmetric TCC

- Charge Neutral Condensation in Average is possible
- Quadruplet e*(4,4) is formed as Single Particle at central focal point (T-site) of 0.01 nm diameter domain
- <Life Time of e*(4,4)>
- > (1.0E-9)cm/Ve
- =1.0E-9/4.3E5 =2.3E-15
- = 2.3 fs
Quadruplet and Octal-Coupling of Electrons

Combination Probability of EQPET Molecule by Tetrahedral "Coherent" Condensation (TCC)

- < dde *(2,2) > = (12/16)x(1/4) = 18.75 %
- $< dde^{(4,4)} > = (2/16)x(1/4) = 3.12 \%$
- <EQPET Molecule Total> = 21.87 %
- (c.f. 18 % by EODD for Rdd < 0.1 angstrom)

Octahedral Symmetric (Coherent) Condensation

When 4 e- down-spins are arranged on upper half with 4 e- up-spins on lower half, Averaged chargeneutral condensation is Possible to form central e*(8,8) **Transient Quasi-**Particle State at O-site

Transient Molecular States by EQPET

EQPET: Electronic Quasi-Particle Expansion Theory

EODD: Electron Orbit Deformation Dynamics simulation (Kirkinskii-Novikov)

Fusion Rate of D-Cluster

Cluster Formation Probability in Atomic Level

Calculation by Excitation Screening Model

Barrier Factor for Screened Potential

EQPET: Electronic Quasi-Particle Expansion Theory

- Wave functions of TSC or OSC cluster can be approximated by linear combination of partial wave functions for normal and quasimolecular states, dde, ddee, dde* and dde*e*.
- 4D and 8D clusters are composed of dde, ddee, dde*, dde*e*,...molecules.

EQPET: continued-1

"Bosonized" electron wave function N for N-electrons system in MDx lattice will be approximated by a linear combination of normal electron wave function (1,1)G and quasi-particle wave functions (2,2)G (4,4)G and (8,8)G as;

 $_{N} > = a_{1} \qquad _{(1,1)G} > + a_{2} \qquad _{(2,2)G} > + a_{4} \qquad _{(4,4)G} > + a_{8} \qquad _{(8,8)G} >$ (3)

For the time-window of potential deep hole ^{1,2)}, effective (timeaveraged) screening potential, for a d-d pair in a transient Dcluster of 4-8 deuterons for TRF and ORF condition²⁾, can be defined by a screened potential of quasi-particle complex;

 $V_{s}(R) = b_{1}V_{s(1,1)}(R) + b_{2}V_{s(2,2)}(R) + b_{4}V_{s(4,4)}(R) + b_{8}V_{s(8,8)}(R)$

(9)

EQPET: continued-2

For a dde* or dde*e* molecule,

wave function of a d-d pair (2D) is given by the solution of the following Schroedinger equation:

 $(-h^2/(8 \mu))^2 (R) + (V_n(R) + V_s(R)) (R) = E (R)$ (11)

By Born-Oppenheimer approximation, we assume as,

 $(R) = {}_{n}(R) {}_{s}(R)$ (12)

EQPET: continues-3

Using WKB approximation for the **barrier (V** $_{s}(R)$) penetration probability,

 $_{s}(R) ^{2}_{R=r0} = exp(-2 _{n}(E_{d}))$ (14) ;Barrier Factor (BF)

where E $_d$ is the relative deuteron energy and $_n$ is Gamow integral for a d-d pair in D-cluster (n-deuterons with electrons) that is defined as:

 $_{n}(E_{d}) = (2 \mu)^{1/2} / (h/) = _{r0}^{b} (V_{s}(R) - E_{d})^{1/2} dR$ (15)

Using astrophysical S-factor for strong interaction,

G
$$_{n}(R) ^{2}_{R=r0} = vS_{2d}(E_{d})/E_{d}$$
 (16)

Consequently we can approximately define fusion rate as:

 $_{2d} = (vS_{2d}(E_d)/E_d) \exp(-2 (E_d))$ (17)

Screened Potential of EQPET Molecule

Using the Single Particle Approximation, for e*, screened potential is given by applying solutions in Pauling's book:

For dde*, Vs(R) = Vh + e^2/R + (J + K)/(1 + Δ)

For dde*e*,

 $Vs(R) = 2Vh + e^2/R + (2J + J' + 2\Delta K + K')/(1 + \Delta^2)$

For de*, $Vh = -13.6(e*/e)^2(m*/me)$

Variational Method for Potential Calculation

1-0+0 = M02= + + 00 + V.00 - 81X 00 = 0

where, V.00 = + 00 | screened Morse potential

Screened Potential by ddee :

from Pauling Wilson book

· (r,R) = C_iu_i + C_ju_i

Using the variation principle, + (R) = V.(R) is solved as given in the text book of Pauling-Wilson*, as:

 $V_s(R) = V_h + e^{z/R} + (J+K)/(1+\Delta)$

Where, for fundamental modes of wave functions,

J = ound) (Zevin)) unit Tievial(1/y+(1+1/y)eap(-2y))

K-Guid (Zolle) unite Slattakleylexp(y)

A=(a_1 a_2) = (1+y+y*/2)esp(+y)

With y= X/a , a = $a_s/Z/(aTa_s)$ and $a_s = 0.053$ res.

V, is margy state of det stom, i.e.,

 $-\hbar \sqrt[4]{(2n)} \nabla \sqrt{u_{sst}} - (2n/s)u_{sst} - V_t u_{sst} = 0$

 $V_{\rm s} = -2\pi^2/(2\pi) = -13.62^{\circ}(40^{\circ}me)$

Screening Effect by EQPET Molecules

Screening Effect: EQPET Molecule vs. Heavy Fermion

Cooper pair (single particle) works as strong as mass 10 fermion Pairing of e*(2,2)s works as strong as mass 100 fermion

e*(4,4)< μ (208,1)<e*(8,8)

Screening Effect by Quasi-Particle

Screening Potential for dde*(8,8) Molecule

Parameters for Deep Potential Hole : by EQPET

•	(m*/m _e : Z)	depth of trapping potential (DTP)					
•	for e*	dde*	dde*e*				
•	(1,1)	- 14.87 eV	- 30.98 eV				
•	(2,2)	- 260 eV	- 446 eV				
•	(4,4)	- 2,460 eV	- 2,950 eV				
•	(8,8)	- 21.0 keV	- 10.2 keV				

•DTP values approximately correspond to Screening Energy

Scaling of PEF (Pion Exchange Force) for Nuclear Fusion

Two Body Interaction:	PEF = 1		
n + * p			
(udd) (u <mark>d</mark> *) (uud)	: u ; up quark		
p + ⁻ n	: d ; down quark		
(uud) (<mark>u</mark> *d) (udd)	: <mark>u</mark> * ; anti-up quark		
	: d* ; anti-down quark		

For D + D Fusion; PEF = 2

PEF Scaling for Multi-Body Fusion

Ideally Symmetric PEF enhances Contact Surface of Nuclear Fusion with short range (few fm) charged-pion exchange

$4D \rightarrow {}^{8}Be^{*}$ vs. $D+{}^{6}Li \rightarrow {}^{8}Be^{*}$; for strong interaction

4D Fusion has much larger Contact Surface of PEF than D+⁶Li with short range (few fm) charged-pion exchange

How does the short range force work?

- There are two lumps of paste.
- 1) Put one lump on a large paper.
- 2) Using another lump, paste uniformly another paper with same size.
- Which can stick much more tightly to a wooden plate, 1) or 2)?
- The answer is of course 2)!

Because 2) has much larger Contact Surface!

Effective S(0)-values for Multi-Body D-Fusion

Barrier Factors (BF) and Fusion Rates (FR)

				Ed = C).22eV			
(m*, e*)	*) Barrier Factor				Fusion Rate (f/s/cl)			
	2D	3D	4D	8D	2D	3D	4D	8D
(0,0)	E-1685				E-1697			
(1,1)	E-125	E-187	E-250	E-500	E-137	E-193	E-252	E-499
(2,1)	E-53	E-80	E-106	E-212	E-65	E-86	E-108	E-211
(2,2)	E-7	E-11	E-15	E-30	E-20	E-17	E-17	E-29
(4,4)	(3E-4)	E-5	E-7	E-14	(E-16)	E-11	E-9	E-13
(8,8)	(4E-1)	(2E-1)	(1E-1)	2E-2	(E-13)	(E-7)	(E-3)	E-1

() is virtual rate

Modal Fusion Rates for Octahedral Condensation

Octahedral Condensation

- <octal coupling> = (2/256)x(1/8)= 0.0078 = a_8^2
- <quadru coupling> = (144/256)x(1/8) = 0.0703 = a_4^2
- <Cooper pair> = ((108/256) + (2/4)x(1/7))x(1/8) = 0.0792 = a_2^2
- <Normal e> = $0.8427 = a_1^2$
- _{2d} = 7.9E-22 (f/s/cl)
- _{3d} = 3.5E-13 (f/s/cl)
- _{4d} = 7.0E-11 (f/s/cl)
- _{8d} = 7.8E-4 (f/s/cl)

Modal Fusion Rates

- Modal Fusion Rates aredefined as:
- $_{2d} = a_1^2 a_{1(1,1)} + a_2^2 a_{2d} a_{2d}$

•
$$a_{3d} = a_1^2 a_{3d (1,1)} + a_2^2 a_{3d} a_{(2,2)} + c_4 a_4^2 a_{3d (4,4)}$$

•
$$_{4d} = a_1^2 + a_4^2 + a_$$

•
$$_{8d} = a_1^2 + a_2^2 + a_2^2 + a_4^2 + a_4^2 + a_8^2 + a_$$

Modal Fusion Rates forTetrahedral SymmetricCondensation

•
$$a_1^2 = 0.781$$
, $a_2^2 = 0.187$,
 $a_4^2 = 0.0312$, $a_8^2 = 0.0$

Power Level by TSC and OSC Fusion

D-Cluster Fusion by TSC

- Assume 1E22 TSCclusters/cc at Ed=0.22eV
- 4D Fusion Rate = (3.1E-11)x(1E22) = 3E11 f/s/cc =

3 watts/cc

 2D Fusion Rate = (1.9E-21)x(1E22) = 19 f/s/cc (10 n/s/cc)

D-Cluster Fusion by OSC

- Assume 1E16 OSCclusters/cc at Ed=0.22 eV (1ppm PdD2)
- 8D Fusion Rate = (7.8E-4)x(1E16) = 7.8E12 f/s/cc =

78 watts/cc

 4D Fusion Rate = (7E-11)x(1E16) = 7E5 f/s/cc

Major Products of D-Cluster Fusion

- 1) 3D Li-6* d + He-4 + 23.8 MeV,
 t-3 + He-3 + 9.5 MeV
- 2) **4D Be-8* 2xHe-4** + **47.6 MeV**
- 3) **5D B-10* (53.7 MeV)**
- 4) 6D C-12* (75.73 MeV)
- 5) 7D N-14* (89.08 MeV)
- 6) 8D O-16* (109.84 MeV) 2xBe-8 + 95.2 MeV

4D and 8D Fusion can be selective because of resonant pion exchange
5D, 6D and 7D processes partially attain 4D resonance.

Decay-Channel of ⁸Be

- $4D \rightarrow {}^{8}Be + 47.6 \text{ MeV}$:
- ⁸Be \longrightarrow ⁴He + ⁴He + 91.86 keV: Major Ch.
 - → ³He + ⁵He(n+⁴He) 11.13 MeV
 - → t + ⁵Li(p+⁴He) 21.68MeV
 - → d + ⁶Li 22.28 MeV
 - → p + ⁷Li 17.26 MeV
 - → n + ⁷Be 18.90 MeV

⁸Be Excited State may open to threshold reactions

8D → ⁸Be + ⁸Be + 95.2 MeV

⁸Be \longrightarrow ⁴He + ⁴He + 47.7 MeV (g.s)

$8D \longrightarrow {}^{4}He + {}^{12}C + 50.12 \text{ MeV}$

•¹²C excited state is possible to decay to three ⁴He particles.

⁴He is Major Product: CLEAN FUSION

- Emission of Two 23.8 MeV (Max) ⁴He-Particles into 180 degree Opposite Directions by 4D Fusion of TSC/TRF, slowing down with soft X-rays and E-deposit to lattice vibration (phonons).
- Emission of Two 47.6 MeV ⁸Be-Particles into 180 degree Opposite Directions by 8D Fusion of OSC/ORF, following ⁸Be to two 23.8MeV ⁴He-Particles decay in 6.7E-17 s.

Karabut Data and Pd + ⁴He Reactions

Impurity production rates in Pd cathode of D2 glow-discharge plus SIMS, by Karabut, Proc. ICCF9, 2002

- Secondary Reactions by 23.8MeV ⁴He of 4D TRF
- ${}^{105}Pd + {}^{4}He \rightarrow {}^{109}Cd^{*}(1.27y)$
- 106Pd + 4 He $\rightarrow 110$ Cd
- ¹⁰⁸Pd + ⁴He → ¹¹²Cd
- ¹¹⁰Pd + ⁴He ¹¹⁴Cd
- ¹⁰⁷Pd*(6.5x10⁶ y) + ⁴He ¹¹¹Cd

¹⁰⁹Ag might be ¹⁰⁹Cd ?

A-8 and Z-4 Increased Transmutation by MHI

MHI D-permeation experiment with Pd comlplexes, Iwamura et al., Proc. ICCF9

- Cs(A=133, Z=55) to Pr(A=141, Z=59)
- Sr(A=88, Z=38) to Mo(A=96, Z=42)
- M(A,Z) + ⁸Be(47.6MeV) by 8D ORF

Sample of MHI Exp.

Speculation to IWAMURA Experiment:

⁸Be + Pd Reaction ?

Why do we not see secondary fusion reactions for Pd + Be 8 reaction ?

Possibly due to strong resonance for Sr (or Cs and...) + Be-8(47.6 MeV) reaction ? (We need proof !)

But no such resonance for Pd isotopes ?

Coulomb Barrier at Contact Distance

 $V_{C} = 1.44Z_{1}Z_{2}/R : in MeV and fm$ $R = R_{1} + R_{2} + \lambda$ $\lambda : about 2 fm, pion range$

$\mathbf{R}_i = 1$	1.2.4,	10 A.	R, •	1.2	A _k	

Reaction	R (fm)	Barrier (MeV)
D+D	5.0	0.29
Sr-88 + Be-8	9.7	22.5
Ce-133 + Be-8	10.5	30,1
NUMBER OF STREET		4
		CL AT LIVE A

•47.6MeV Be-8 is well over CB!

3D

Bart Kings + & as an

Why no hard radiation ?

Question: QED Energy Transfer POSSIBLE / H K E .

•Because most energy goes to M(A+8,Z+4) Kinetic Energy

Gamma-Ray Emission ?

- ¹³³Cs +⁸Be <u>141</u>Pr + Q(2.89MeV)
 For Pr excited state, Eg = 0.145, 0.981
 1.126,.....MeV
- Kinetic Energy of ⁸Be(47.6 MeV): goes to KE of ¹⁴¹Pr
- 5.95 MeV/nucleon is smaller than n-separation Energy: particle emission cross section will be small.

If it were so:

$$^{133}Cs + 4D \longrightarrow ^{141}Pr^*(Q=50.493 \text{ MeV})$$

Fission !

- But Coulomb barrier ca. 10 MeV is too high to realize in condensed matter.
- This is as difficult as impossible to make ¹⁴¹Pr.

•However, 4D-TSC can penetrate through CB !

Minimum Size of TSC is far less than 1 pm!

- 4d + 4e of TSC squeezes into a very small charge-neutral pseudo-particle.
- When 4d reach at the interaction range (several fm) of strong force, ⁸Be* is formed by QM-penetration through EQPET shielded potential.
- As ⁸Be* is formed, 4e are left at outer domain, which size is approximated by e*(4,4)Be atom size of 0.8 pm.

Vs Potential for $e^{(4,4)} \alpha \alpha$ molecule

- $V_{min} = -9.83 \text{ keV}$
- Rdd(GS) = 13 pm
- b-parameter = 0.6 pm (radius, TSC transient)
- Radius of e*(4,4)Be = 53/4/4/4 = 0.8 pm

Vs Potential for e*(8,8)8Be8Be molecule

 $V_{min} = -32.9 \text{ keV}$ $R_{dd}(GS) = 5 \text{ pm}$ b-parameter = 60 fm (radius, OSC transient)

How deep can TSC penetrate through e-cloud?

M + TSC Nuclear Interaction Mechanism

Range of Strong interaction (3-5 fm)

- Topological condition for Pion-Exchange (PEF)
- Selection of pick-up number of protons (+ neutrons for 4d/TSC) from 4p/TSC
- M + (1-4)p(or d) capture reaction

TSC Size by Dynamic Condensation

Sudden Tall Thin Barrier Approx.

When p (or d) gets into the strong force range, electrons separate and p (or d) feel Coulomb repulsion to the M-nucleus charge

$$r_0 = 1.2A^{1/3}$$

- $b = r_0 + \lambda \pi (=2.2 \text{ fm})$
- $P_M(E) = exp(-G)$
- $G = 0.436(\mu V(R_{1/2}))^{1/2}(b-r_0)$

•
$$R_{1/2} = r_0 + (b - r_0)/2$$

- Reaction rate:
 - $\lambda = S_{Mp}(E)vP_M(E)P_n/E$
- Pn =

exp(-0.218n(μV_{pp})^{1/2}R_{pp})

: Plural p (or d) existence probability in $\lambda \pi$ range for n > 1. Pn = 1, for n = 1.

Results by STTBA calculation; M = Ni

•
$$P_{Mp}(E) = 9.2E-2$$

• $P_{Md}(E) = 3.5E-2$

Reaction Rates:

- $\lambda_{Mp} = 3.7E-8$ (f/s/pair)
- $\lambda_{Md} = 2.1E-7$ (f/s/pair)
- $\lambda_{M4p} = 1.0E-8$ (f/s/pair)

• $\lambda_{M4d} = 3.4E-9$ (f/s/pair)

- <Macroscopic Reaction Rate> = $\lambda x N_{TSC}$
- With $N_{tsc} = 1.0E+16$ in 10nm area, Rate = 1E+8 f/s/cm2 and Y = 1E+14 in 1E+6 sec.

 $V_{pp} = 1.44/6 = 0.24 \text{ MeV}$ $P_{2p} = 0.527$ $P_{2d} = 0.404$

 $S_{Mp}(0) = 1.0E+8 \text{ kevb}$ $S_{Md}(0) = 1.0E+9 \text{ keVb}$

 λ 4d = 4.9E-5

When b-parameter of Ni + TSC potential becomes 0.1 pm, barrier factor is on the order of 1E-22 , which makes ca. 1E+9 reactions/s/cc for the flux of TSC = $1E+14 \text{ p/s/cm}^2$.

- ${}^{58}Ni + p \rightarrow {}^{59}Cu^{*}(3.42MeV)^{59}Ni^{*}_{(7E4 y)}$
- ⁶⁰Ni + p → ⁶¹Cu*(4.80 MeV)⁶¹Ni
- ${}^{62}Ni + p \rightarrow {}^{63}Cu(6.12MeV);_{E_g=669keV}$
- ${}^{63}Ni + p \rightarrow {}^{65}Cu(7.45MeV)$
- ${}^{104}Pd + p \rightarrow {}^{105}Ag^{*}(4.97MeV){}^{105}Pd$
- ${}^{106}Pd + p \rightarrow {}^{107}Ag(5.43MeV)$
- ${}^{108}Pd + p \rightarrow {}^{109}Ag(6.49MeV)$
- Prompt Gamma-Rays emit.
 Ni-H gas system exp. By Piantelli (ASTI5)
 ; 660 keV peak by NaI detector

- ${}^{58}\text{Ni} + 4p \rightarrow {}^{62}\text{Ge}(11\text{MeV}) \rightarrow \text{FP?}$
- ${}^{58}\text{Ni} + 4d \rightarrow {}^{66}\text{Ge}(54\text{MeV}) \rightarrow \text{FP}$
- $^{105}Pd + 4p \rightarrow ^{109}Sn(23MeV) \rightarrow ?$
- $^{105}Pd + 4d \rightarrow ^{113}Sn(52MeV) \rightarrow FP$
- $^{104}Pd+4d \rightarrow ^{112}Sn(52MeV) \rightarrow FP$
- Fission can be induced by TSC capture!
- Many foreign elements were detected by Piantelli, Karabut, Yamada, Ohmori, Mizuno, Miley, etc.

Ni + H reactions may be explained!

- When b-parameter of Ni + TSC potential becomes 0.1 pm,
- barrier factor is on the order of 1E-22,

 which makes ca. 1E+9 reactions/s/cc for the flux of TSC = 1E+14 p/s/cm².

Products by Ni + p reactions

• ⁵⁸Ni+p→

⁵⁹Cu*(1.36m, EC)⁵⁹Ni*(7E4 y)

- ⁶⁰Ni + p →
 ⁶¹Cu*(3.3h, EC)⁶¹Ni
- ⁶¹Ni + p →
 ⁶²Cu*(9.7m, EC)⁶²Ni
- ⁶²Ni + p → ⁶³Cu(6.12MeV);Eg=669keV
- ⁶⁴Ni + p → ⁶⁵Cu(7.45MeV)

- Ni-H gas system exp. By Piantelli (ASTI5)
- ; 660 keV peak by Nal detector
- 660 MJ Excess Energy

Prompt Gamma-Rays emit.

Fission by M + TSC is possible!

• ${}^{58}\text{Ni} + 4p \rightarrow$

 62 Ge(11MeV) →FP

- ${}^{58}\text{Ni} + 4d \rightarrow$
 - ⁶⁶Ge(54MeV) →FP
- $^{105}Pd + 4p \rightarrow$

¹⁰⁹Sn(23MeV) →?

• ${}^{105}\text{Pd} + 4\text{d} \rightarrow$

¹¹³Sn(52MeV) →FP

• ${}^{104}\text{Pd} + 4\text{d} \rightarrow$

 112 Sn(52MeV) \rightarrow FP

Many foreign elements were detected by

Piantelli, Karabut, Yamada, Ohmori,

Mizuno, Miley, etc.

 Fission can be induced by TSC capture! Table : Natural abundance of Ni isotopes and

the excitation energies of compound nucleus by + 4p and + 4d reactions

Nuclides	Natural abundance (%)	+ 4p	Excitation energy (MeV)	+ 4d	Excitation energy (MeV)
⁵⁸ Ni	68.077	⁶² Ge*	11.2	⁶⁶ Ge*	53.9
⁶⁰ Ni	26.223	⁶⁴ Ge*	19.1	⁶⁸ Ge*	55.1
⁶¹ Ni	1.140	⁶⁵ Ge*	21.3	⁶⁹ Ge*	55.4
⁶² Ni	3.634	⁶⁶ Ge*	24.0	⁷⁰ Ge*	56.4
⁶⁴ Ni	0.926	⁶⁸ Ge*	29.0	⁷² Ge*	58.0

Ni-H Exp. By G. Miley and J. Patterson, J. New Energy, 1996, 1(3)p.5.

¹³³Cs + TSC Reactions

- $^{133}Cs + d \rightarrow ^{135}Ba(Ex=12.91MeV) \rightarrow ^{135}Ba(stable) + gammas(12.91MeV)$
- $^{133}Cs + 2d \rightarrow ^{137}La(Ex=25.32MeV) \rightarrow FPs$

or $^{137}La(6E+4 y) + gammas$

• $^{133}Cs + 3d \rightarrow ^{139}Ce(Ex=38.29MeV) \rightarrow FPs$

or ¹³⁹La(stable) + gammas

• $^{133}Cs + 4d \rightarrow ^{141}Pr(Ex=50.49MeV) \rightarrow FPs$

or ¹⁴¹Pr(stable) + gammas

Note: (1) + 2d is equivalent to ⁴He + 23.8MeV. (2) We need to detect 50.49 MeV gamma?

M+4d/TSC is much easier than M+4p/TSC

- Because fusion strong force (PEF values) for M+4d is about twice of M+4p
- (c.f.) $S_{dd}/S_{pd} = 10^6$ with PEF = 2 for dd and PEF = 1 for pd
- Because we need to multiply probability of anti-parallel spin arrangement for protons in 4p-TSC.

• ${}^{133}Cs + p \rightarrow {}^{134}Ba(8.17MeV)$

 \rightarrow ¹³⁴Ba(stable)

•
$${}^{133}Cs + 2p \rightarrow {}^{135}La(13.16MeV)$$

 \rightarrow ¹³⁵Ba(stable)

•
$$^{133}Cs + 3p \rightarrow ^{136}Ce(20.28MeV)$$

 \rightarrow ¹³⁶Ce(stable)

or FPs

- $^{133}Cs + 4p \rightarrow$
 - ¹³⁷Pr(24.28MeV,1.28d)
 - \rightarrow ¹³⁷Ce(1.43d)¹³⁷La

or FPs

If it were so:

¹³³Cs + 8n (cluster-n, if existing) \longrightarrow ¹⁴¹Cs(Q=-5.53 MeV) \longrightarrow ¹⁴¹Ba(18.3m) \longrightarrow ¹⁴¹La(3.92h) \longrightarrow ¹⁴¹Ce(32.5d) \longrightarrow ¹⁴¹Pr

- ¹⁴¹La and ¹⁴¹Ce should be found in experiments: No Observations !
- Threshold reaction: E8n should be GT 5.6 MeV.
- So, this is not possible in condensed matter.

Transmutation by 8D fusion of ORF Condensation

⁸Be Absorption Reaction for Transmutation

- $8D 2x^8Be + 95.2 MeV$
- M(A,Z) + ⁸Be(47.6 MeV) M(A+8, Z+4) + Q
- ${}^{88}Sr + {}^{8}Be(47.6 \text{ MeV})$ ${}^{96}Mo + Q$
- 133Cs + $^{8}Be(47.6 \text{ MeV})$ $^{141}Pr + Q$

Deformed cloud of ⁸Be makes large contact surface of pion-exchange for capture (fusion) reaction.

³He/⁴He Production Ratio by Tetrahedral Symmetric Condensation

AIMS

- Some works report ³He generation, in addition to ⁴He: Arata-Zhang, McKubre et al., and so on
- Based on EQPET model to treat 4-body resonance fusion of mixed H/D state under tetrahedral symmetric condensation, calculation is made to estimate variation of ³He/⁴He production ratio as a function of H/D mixing rate.

• EQPET: Electronic Quasi-Particle Expansion Theory

Classical View of Tetrahedral Condensation

Orthogonal Coupling of Two D2 Molecule makes Miracle !

Transient Combination of Two D2 Molecules (upper and lower)

Squeezing only from O-Sites to T-site

3-dimension Frozen State for 4d+s and 4e-s

Quadruplet e* (4,4)

Formation of Electrons around T-site

Assumptions

- By replacing one or two deuterons in 4D TSC with one or two protons
- And assuming same velocities for d and p due to keeping charge-neutrality and energy-minimum in dynamic motion
- We can apply the model to H/D mixed systems

Basic 4-body Fusion by TSC

 $D+D+D+D \rightarrow {}^{8}Be^{*} \rightarrow {}^{4}He + {}^{4}He + 47.6MeV$

$D+D+D+H \rightarrow {}^{7}Be^{*} \rightarrow {}^{3}He + {}^{4}He + 29.3MeV$

 $D+H+D+H \rightarrow {}^{6}Be^{*} \rightarrow {}^{3}He + {}^{3}He + 11MeV$

Combination Probability of H/D Mixed TSC Cluster

- Y = H/D
- DDDD: (1-Y)⁴
- DDDH: (1-Y)³Y
- DHDH: (1-Y)²Y²
- DHHH: (1-Y)Y³

Normalize sum probability to be 1.0

Combination Probability for TSC Cluster

Fusion Rate Calculation for EQPET Molecule

- $\lambda dddp = (Sdddp/E)vP(dd)P(dp)$
- $\lambda \operatorname{dpdp} = (\operatorname{Sdpdp}/E) \vee P(dp) P(dp)$
- $S_{dddp} = 10^9 \text{ keVb}$
- $S_{dpdp} = 10^8 \text{ keVb}$
- P(dp): Barrier factor for d-p fusion with dpe* molecule: exp(-2 Γ_n)
- $\Gamma_n = \int (V_s E)^{1/2} dE/((h/\pi)/(2\mu)^{1/2})$

Fusion Rate for EQPET Molecule

EQP	DDe*	DHe*	DDDDe*	DDDHe*	DHDHe*
	(f/s/cl)	(f/s/cl)	(f/s/cl)	(f/s/cl)	(f/s/cl)
e(1,1)	1E-137	1E-120	1E-252	1E-232	1E-228
e*(2,2)	1E-20	1E-23	1E-17	5E-16	2E-14
e*(4,4)	(1E-16)	(1E-21)	1E-9	1E-10	1E-10

Calculation of Modal Fusion Rate

• Wave function for TSC cluster:

 $\Psi_{t} = a_{1} \Psi(1,1) + a_{2} \Psi(2,2) + a_{4} \Psi(4,4)$

• Modal Fusion Rate:

 $\lambda = a_{1^{2}} \lambda (1,1) + a_{2^{2}} \lambda (2,2) + a_{4^{2}} \lambda (4,4)$

 By taking into account spin arrangement only, a1²=0.78, a2²=0.19, a4²=0.03

Modal Fusion Rate

 Considering statistical weights for spin arrangement, modal fusion rates were calculated using FRs of EQPET molecules

DDDD-TSC	DDDH-TSC	DHDH-TSC	
λ dd = 2E-21	λ dp = 1E-23	λ dp = 1E-23	
(f/s/cl)	(f/s/cl)	(f/s/cl)	
λ dddd = 3E-11	λ dddp = 4E-12	λ dpdp = 3E-12	
(f/s/cl)	(f/s/cl)	(f/s/cl)	
Using combination probabilities of H/D mixed clusters and modal fusion rates, ³He/⁴He ratios were calculated

Comparison with Experiment

• Arata-Zhang; ³He/⁴He ca. 0.25

Proc. Jpn. Acad., 73, Ser.B(1997)1-7

• Present Theory;

 3 He/ 4 He ca. 0.25 for H/D = 0.6

³He for Stable Nuclear Fuel

- Stable Resource to produce Tritium: ³He + n \rightarrow p + t + 0.765 MeV
 - Easy to extract T from gas-pase.
 - Tritium decays with 12.3 yrs half life.
 - For DT reactors and H-bomb.
 - (neutron detector)
- Fuel for D-³He reactors.

Summary for ³He/⁴He Ratio

- H should be contained with some amount in usual CMNS deuterium-experiment.
- EQPET model was applied to 4-body fusion of mixed H/D TSC-system.
- ³He/⁴He production ratio was 0.001 for 1 % H-contamination.
- ³He/⁴He production ratio was 0.16 for 50 % H-contamination.

OUTLINE-2: Selective Channel Fission Theory

- 2.1 Channel Dependent Fission Barrier
- 2.2 Rotating Liquid Drop Model
- 2.3 Selective Channel Scissions
- 2.4 Test by U-235 + n Fission
- 2.5 Pd, W, Au
- 2.7 A-Distribution, Z-Distribution, Isotopes and Radioactivity

Fission Barrier by Rotating Liquid Drop Model

Fig.3 : Tandem (dumbbell dipole) oscillation and scission process

Channel Dependent Fission Barriers for U-235 + n

FP Distribution for U-235 + n Fission

•At Two Peaks, Many Stable Isotopes while Many RI's at valley and edges

EL Timin > 000

A DECEMBER OF
and the second se
and the second
and the second se
10 M 10 M 10 M
March and a second second
and the second second
A DECEMBER OF STREET
100 M 100 M
A DECEMBER OF
CONTRACTOR OF
and the second s
and a state
and the second se
Martin and A
and the second s
10 10 10 10 10 10 10 10 10 10 10 10 10 1
ALCONG THE REAL OF
COLUMN AT M
A CAN A C
C A A A
and the second se
Carlot Carl
Contraction of the second
Town the fact in the
and the set of
and the second sec
and the second second
and the second s
and the second second
and the second second
A PARTY AND
ALL AND A
2

a = second m = misute h = hour d = day y = pear A = matastable							
No.	Planton Product	% Yield	Baf.	No.	Fission Product	S Tield	Ref.
T2	En H HERE	0.000016	20, 21	325	Sta ¹⁰⁰ (2.03)	0.031	42
13	Q4 9 (3.0M)	0.00011	21	126	SD IN (IN)	0.05	43
11	AN GR.TRL	0,0083	12, 23	127	ED ^{IN} (PIN)	0.13*	37, 44
	And the sure	0.011	74	129	star is a water	0.27	
	and the second				an III canno JI		
	Sector City And	0.19	20	130	Solution,	2.0	45
8 I	Note (stable)	1.00	26 27 28	132	Xe ¹⁸ (stable)	4.30 4.315	
	Sth ⁸⁸ (stable)	1.30	26	133	Ca ^{1B} (stable)	6.59 6.49*	
44	Kr ^M (stable)	2,02	26, 27, 28	134	Xe ^{1N} (stable)	8,06, 7,9*	1.1
	matt is a talks	2.49	-	115.0	Call Craw take		
	Se ³⁰ (stable)	3.67	26, 29	135	Ne ¹² (stable)	6.46. 6.38*	23
	5r ²⁰ (0.1d)	4,79	30	137 .	Call (Try) Good A	8.10. 6.00*	24
90 -	Se ³⁴ (28y).	8.77*	26, 29	138	Ba ¹² (stabin)	8.74	2.9
#1	Zr ¹¹ (stable)	3.84	29	139	BATH (SAM) GAN	6.53 ^h	30, 47
72	Zell (stable)	8.03	29	140	Celli (stable)	8.44h.e	24, 29
35.4	Zr 1 (1.1 × 10 2) E.P.F	6,45	29	141	Ce ¹⁴¹ (33d)	-6.0	4.5
14	Zr ³⁴ (stable)	6.40	29	142	Celli (stable)	5.95	48
95	Mon (stable)	0.27	29	343	Nd ¹⁴³ (stable)	0.947	24, 29
54	Zr" (stable)	6.33	39	144	Nd14 (2 × 10 "Y)	8,417	26, 29
37	Most (stable)	6.09	25	145	Nd ¹⁴⁸ (stable)	3.954	24, 29
56	Mo ^m (stable)	8.78	28	144	Nd ¹⁴¹ (stable)	3.97*	24, 28
22	Ma MAL EATHA	8,06*	30, 31	347	Sm WT (1.3 × 10 152	8.58	24
00	Month (Mable)	6.30		144	Nation (stable)	A.TH.	26, 28
2 A	Server (Makley	3.0		149	Sen GELADERS	4.80	
03	Rute (stable)	4.1		159	Not (stable)	9.45*	24, 28
0.0	Au	3,0	22, 23	151	Am (#0)3.	0.44	
	And Manada	1 0.0h		144	Non Bil (1754)	0.15	37.48
-	Bull (1.01x)	0.34	100 00 00	100	San WH (stable)	0.017	1.2
3/1	and the state			2000	and the second s		1.1
10 B C	NA CELEG	8.19	- 24	180	Ann Gam)	0.033	1 40 40
	tolli it the	0,030	31	134	Pall (15,60)	0.011	37. 40. 01
112	NAME OF TAXABLE	a atak	40.00	100	For Life (solars)	0.042	32
1.	Call man - Caller use	0.011		144	Call# (18%)	0.00197*	49.53

FP of U-fission becomes CLEANER IF Lower Excitation (5MeV) by Multi-Photons Absorption Process

Fig. 3. Mass distribution of fission products for thermal neutron fission of ²³⁵U.

Multi-Photon Absorption Process in PdDx

Fig. 2-2: Coherent X-rays for PdDx system

Fig. 2-3: Multi-Photon Excitation

Excitation to E1 Giant Resonance

- Excitation by Low Energy (<5MeV) Photons to avoid nucleon (neutron; ca. 5 MeV separation energy) emission
- Multi-Photon Absorption to make Collective Deformation (Dumbbell = E1 + E3)
- Excitation Pumping-up via Random Level Transition (Enhanced Cross Section for Excited State Photon-Absorption)

Determination of Fission Barrier Height for Pd

Fig.4 : Fission potential for a scission channel of ¹⁰⁶Pd

Channel Dependent Fission Barriers for Pd-104

Fig.6-b : Pattern of channel-dependent fission barriers, for ¹⁰⁴Pd

Channel Dependent Fission Barriers for Pd-105

Fig.6-c : Pattern of channel-dependent fission barriers, for ¹⁰⁵Pd

Fig. 2-4: Fission barriers for Pd isotopes

1.02

11.14

22.33

27.33

26.46

11.72

Channel Dependent Fission Barriers for Au-197

Fig.7 : Pattern of channel-dependent fission barriers, for ¹⁹⁷Au

Fission Products Mass-Distribution for Pd

•Mizuno Exp.: D2O/Pd Electrolysis

FP Element-Distribution for Pd

Anomaly of Isotopic Ratios

Fig. : Comparison of Isotopic ratios between natural Fe, LEPF/LB1 and experiment

Top 10 FP Channels for Pd Photo-Fission

(1) 104 Pd 50 Ti + 54 Cr + 18.96 MeV (E_f = 11.36 MeV) (2) 102 Pd 50 Ti + 52 Cr + 18.91 MeV (E_f = 11.60 MeV) • (3) 105 Pd ⁵¹Ti(5.8 m)⁵¹V + ⁵⁴Cr + 18.24 MeV ($E_f = 11.98 MeV$) ٠ 50 Ti + 55 Cr(3.5 m) 55 Mn + 18.12 MeV (E_f = 12.11 MeV) (4) 105 Pd • (5) 102 Pd $^{48}\text{Ti} + {}^{54}\text{Cr} + 17.49 \text{ MeV}$ (E_f = 13.03 MeV) • $^{48}Ca + {}^{58}Fe + 16.46 \text{ MeV}$ ($E_f = 13.23 \text{ MeV}$) (6) ¹⁰⁶Pd • (7) 106 Pd 50 Ti + 56 Cr(6 m) 56 Mn(2.6 h) 56 Fe + 16.81 MeV • $(E_f = 13.32 \text{ MeV})$ • $^{48}Ca + {}^{60}Fe(1.6x10^{6} \text{ y})^{*} + 16.10 \text{ MeV}$ (E_f = 13.42 MeV) (8) ¹⁰⁸Pd • (9) 106 Pd 52 Ti(1.7 m) 52 V(3.7 m) 52 Cr + 54 Cr + 16.49 MeV • $(E_f = 13.63 \text{ MeV})$ • (10) 105 Pd 48 Ca + 57 Fe + 15.98 MeV $(E_f = 13.81 \text{ MeV})$ •

Fission Products for A<200 become clean.

•FP of Pd LEPF Becomes Very CLEAN

Table 61: RI Products and Decays, by LEPF/LB2:

(Ex = 20 MeV), for Pd-natural

(+ ; Ex+ 15HeV)

	RI Product	Yield(%)	Decay and Final Stable Isotope
	Si-32	1.72	(100% #:: 172y)=P
	P-33	0.02	(100% #-: 25.3d)=S
+	S-35	0.40	(100% #-: 87.5d) ²⁶ C1
	Ar-39	0.40	(100% s-: 269y)=K
	Ar-42	1.72	(100% A : 32.9y) "K
*	Ca-45	1.92	(100% # : 163.8d)#Sc
	Sc-46	0.02	(99.9964% s-: 83.7d)
		00 M.C.	*Ti*(2.01MeV;1.6pa)*Ti
	V-49	0.02	(100% EC: 330d)"Ti
	V-50	0.02	(83% EC: 1.4x10 ¹⁷ y) ⁵⁰ Ti
	Cr-51	0.02	(90% EC; 27.7d)"V.
			(10% EC) 1V*(0.32MeV)4V
	Mn·53	0.02	(100% EC: 3.7x10 ⁶ y) ⁵³ Cr
	Mn-54	0.02	(100% EC: 312d) Cr*(0.83MeV:7.9pa) 40
	Fe-55	0.02	(100% EC: 2.73y) ³⁶ Mn
A	Fe-59	218	(53% g -: 44.5d) ** Co*(1.099MeV:3pa)** Co
			(45% g -: 44.5d) =Co*(1.291MeV:551ps) =C
¥	Fe-60	1.93	(100% a 1.5x10 ⁶ y) ⁴⁰ Co*
÷	Ni-63	1.00	(100% a : 100y) ^{III} Cu
•	Sr-89	0.38	(99.99% #~; 50.5d)#Y
•	Sr:90	0.47	(100% #:: 28.8y)%Y*(99.99% #::64h)%Zr

In LB2; 152 SCS Channels \rightarrow 304 FPs Final Products; Radioactive FPs \rightarrow 18 \rightarrow 5 γ emitters , small yield Stable Isotopes \rightarrow 286

Summary of Low Energy Photo-Fission and Discussion

- Multi-Photon Induced Fission by Low Energy (<5MeV = Neutron Separation Energy) Photon Burst (X-ray or Gamma-ray Laser)
- Clean Fission Products for 100<A<200
- Less Radioactive Fission for Th-232 and U-238 with Energy Gain
- Application for Transmutation

Cleaner Fission Mini-Reactor

- ²³⁸UDx System, ²³²ThDx System
- Stimulation by Laser, Plasma Electrolysis, etc.
- TRF(4D) and ORF(8D) Fusion with X-ray Burst and High Energy Alpha-Particles
- Low Energy Photo-Fission with Gain = ca.
 50 to 100
- No Neutron-Chain Reaction: Intrinsic Safe

Multi-body Fusion Reaction

(1)
$$3D \rightarrow {}^{6}Li^* \rightarrow d + {}^{4}He + 23.8 \text{ MeV}$$

- (2) $4D \rightarrow {}^{8}Be^{*} \rightarrow 2 {}^{4}He + 47.6 \text{ MeV}$
- (3) $8D \rightarrow {}^{16}O^* (109.84 \text{ MeV}) \rightarrow 2 {}^{8}Be + 95.2$

Nuclear Transmutation

- (1) $\mathbf{M} + Photons \rightarrow FP1 + FP2$ (Ti, Cr, Fe etc.)
- (2) $M + {}^{4}He \rightarrow M'$ (Cd for Pd) $\rightarrow FP1' + FP2'$ (Ti, Cr, Fe etc.)
- (3) $M + {}^{8}Be \rightarrow M''$ (Sn for Pd, Pr for Cs, Mo for Sr) $\rightarrow FP1'' + FP2''$ (Ti, Cr, Fe

etc.)

Table 3-1: Natural abundance of Pd isotopes and

excitation energies of compound nucleus by + α and + ⁸Be reactions

Nuclides	Natural abundance (%)	+ α (23.8 MeV)	Excitation energy (MeV)	+ ⁸ Be (47.6 MeV)	Excitation energy (MeV)
¹⁰² Pd	1.02	106 Cd *	25.4	$^{110}Sn^{*}$	50.4
¹⁰⁴ Pd	11.14	¹⁰⁸ Cd*	26.1	112 Sn [*]	51.8
¹⁰⁵ Pd	22.33	¹⁰⁹ Cd*	26.3	¹¹³ Sn [*]	52.5
¹⁰⁶ Pd	27.33	$^{110}Cd^{*}$	26.7	¹¹⁴ Sn [*]	53.2
¹⁰⁸ Pd	26.46	112 Cd *	27.3	116 Sn [*]	54.5
¹¹⁰ Pd	11.72	114 Cd *	27.9	¹¹⁸ Sn*	55.8

₄₈ Cd	abundance (%)
106	1.02
108	11.14
109	22.33
110	27.33
112	26.46
114	11.72

Fig. 4-7 :Fission Product Yield for Atomic number (Pd+ α)

Fig. 4-8: Fission Product Yield for Mass number (Pd+ α)

Fig. 5-7 :Fission Product Yield for Atomic number (Pd+⁸Be)

Fig. 6-1: Comparison of isotopic ratio between natural Fe, SCS analysis and experiments.

Discussion

Existence of ${}_{48}$ Cd and ${}_{50}$ Sn in some ${}_{46}$ Pd-system experiment Cs \rightarrow Pr and Sr \rightarrow Me Mitsubishi experiment Suggestion of Pd + α and Pd + 8 Be reactions

Nuclear transmutation (Production of Ti, Cr, Fe

Suggestion of Fission (Pd-photo fission or Pd + α or Pd + ⁸Be ?)

CONCLUSION

- EQPET model was proposed to explain super-screening for d-d fusion in condensed matter
- D-Cluster Fusion can have Resonance for 3D, 4D and 8D Strong Interaction
- ⁴He is Major Product, with minor t and ³He
- Mass-8 & Charge-4 Increased Transmutation is possible by High-E ⁸Be by 8D fusion

Conclusion: continued

- Fission Process by low energy multi-photon absorption may take place
- Alpha-induced Fission is also possible
- Fission Products by LEPF may be CLEAN
- Claimed Transmutations could be explained by FP distribution of LEPF
- Application to Transmutation of High Level Nuclear Wastes is expected
- Formation of TSC is Key!

References:

- A. Takahashi: Tetrahedral and octahedral resonance fusion under transient condensation of deuterons at lattice focal points, Proc. ICCF9, Beijing, 19-24 May 2002, pp.343-348
- A. Takahashi: Drastic enhancement of deuteron cluster fusion by transient electronic quasi-particle screening, Proc. JCF4, 17-18 October 2002, Iwate U, Japan, pp.74-78, http://wwwcf.elc.iwate-u.ac.jp/jcf/
- A. Takahashi, Y. Iwamura, S. Kuribayashi: Mass-8-and-charge-4 increased transmutation by octahedral resonance fusion model, ibid., pp.79-81
- A. Takahashi: Mechanism of deuteron cluster fusion by EQPET model, Proc. ICCF10, August 2003, Boston USA, <u>http://www.lenr-canr.org/</u>
- A. Takahashi: Deuteron cluster fusion and ash, Proc. ASTI-5, March 19-21, 2004, Asti, Italy, <u>http://www.isemns.org/</u>
- A. Takahashi: Clean fusion by tetrahedral and octahedral symmetric condensations, Proc. JCF5, 15-16 December 2003, Kobe, Japan, pp.74-78, <u>http://wwwcf.elc.iwate-u.ac.jp/jcf/</u>
- A. Takahashi, M. Ohta, T. Mizuno: Production of stable isotopes by selective channel photo-fission of Pd, Jpn. J. Appl. Phys., Vol.40(2001)7031-7046
- M. Ohta, A. Takahashi: Analysis of nuclear transmutation as secondary reactions of multi-body fusion, Proc. JCF5, 15-16 December 2003, Kobe, Japan, pp.79-84, <u>http://wwwcf.elc.iwate-u.ac.jp/jcf/</u>

Future Works

Basic strategy;

The system can split into several components, and using solutions for components

we may combine them and understand the total system.

 The place where **TSC** (Tetrahedral Symmetric Condensate) is born? A volumetric (3-dim) region near surface is suggested by many successful recent experiments.

So, this is Surface-Lattice Problems (SLP).

- 2) Physics of TSC itself shall be studied more accurately; TSC-Problems (**TSCP**)
- 3) Coulomb Interaction Problems (CIP) between M (host metal atom) and TSC.
- 4) Nuclear Interaction Problems (NIP) between M and TSC.

•SLP-1) Where are lattice focal points for TSC? T-site, O-site, defects, voids, etc. can be studied. Modeling, equations, numerical solutions, etc., are looked for.

SLP-2) Surface or near-surface conditions incubating TSC?
Topological and fractal configurations and motion of electrons there with p(d)-cluster are expected to study.

TSCP-1) Mechanism of dynamic Bose-condensation;

What is size of TSC as charge-neutral-pseudo-particle (CNPP)? We have a tool like EOPFT (Electronic Quasi-Particle Expansion Theory, by A.T.) which has given CNPP size as small as 0.5 to 4 pico-meter in radius, namely much smaller than atom size of several hundreds pico-meter, and if so CNPP can penetrate through electron-shell-cloud of host (metal) atom to approach nucleus. And modeling by other ways than EQPET is also expected.

TSCP-2) Simulation study of TSC-like condensation;

QMD (Quantum Molecular Dynamics) with Monte-Carlo technique (as done by Kirkinskii-Novikov) is expected for 3-dim system of 8-body (4H(D) + 4 electrons) configuration. **CIP-1**) Modeling of TSC/CNPP penetration through shell-electron clouds of host M-atom to formulate equations and get numerical results is expected;

How CNPP can penetrate e-clouds ? Is it analogous to the neutron movement freely approaching central M-nucleus? **CIP-2**) Barrier penetration probability for close "united cluster" of M+H(or D) to M+4H(or D) to reach at strong nuclear interaction range (ca. 5 femto-meter);

WKB approximation, i.e., Gamow integral can be applied. **NIP-1**) Reaction types and products for from 4D TSC to mixed H/D TSC;

• Studies have been initiated by A.T. and B. Collis,

etc., and to be continued.

NIP-2) Electron capture probability in TSC; Modeling, equations and getting numerical results are expected. This is related to neutron generation. NIP-3) M+p to M+4p reactions;
modeling of out-going channels, products, numerical reaction rates, etc. are expected.

NIP-4) M+d to M+4d reactions;to study ibid.