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INTRODUCTION 
 
The process called Cold Fusion is said to produce clean energy from fusion of deuterium 
nuclei using very simple devices, at least compared to the “hot” fusion method.  Many 
scientists have been outspoken in rejecting this claim based on their belief that the 
observations have not been replicated, are impossible, and cannot be explained.  The 
intent of this article is to provide a brief and easily understood description of why I 
believe this rejection is wrong. 
 
Personal observation is the most convincing argument for believing a claim is real.  Of 
course, as more people observe the claim using their own apparatus, the easier it is to 
accept – thus the need for replication.   The second level of proof rests on everyone 
observing the same patterns of behavior.  In other words, the novel phenomenon is found 
to react in the same way when the same changes are made in experimental conditions.  
Finally, the third level is reached when the phenomenon can be explained.  This is the 
conventional approach.  Unfortunately, some scientists reverse the order of these 
“proofs” by making an explanation the first requirement and personal experience the last, 
especially when cold fusion is discussed.  This approach is not consistent with how 
science operates in most fields of study. 
 
Cold fusion (aka, Low Energy Nuclear Reaction, LENR) is a phenomenon few people 
have experienced.  Furthermore, no agreed upon explanation exists for why it can occur, 
while many reasons can be offered as to why it is impossible [1].  This being the case, 
why bother proving the phenomenon is real?  The answer to this question is complex, but 
can be summarized as follows.  Mankind is using energy that is polluting the air and land, 
with potentially catastrophic consequences.  Even this energy will eventually run out, 
causing a serious reduction in world-wide standard of living and devastating conflict.  
Renewable sources of energy have been found to be inadequate or uneconomic for many 
applications.  These simple facts create a need for a source of energy that does not suffer 
from these limitations.  Cold fusion, if real, would provide an ideal solution to these 
problems.  Because the need is so great, even an unlikely solution is worth exploring.  It 
has been said that an extraordinary claim requires extraordinary proof.  Likewise, an 
extraordinary need requires exploring extraordinary solutions. 
 
In addition to anomalous energy production, evidence has been reported for a variety of 
nuclear reactions.  These reactions include fusion, transmutation and fission, which are 
better described as being LENR processes.  Only the fusion reaction appears to produce 
significant energy, although the other reactions might be used to convert radioactive 
material to nonradioactive isotopes.  Besides the potential uses, these novel nuclear 
reactions suggest that an entirely new mechanism has been discovered to occur at 



 

relatively low energy in a regular array of atoms.  The nature of this nuclear-active-
environment (NAE) has not yet been determined, although it involves a solid lattice 
having small dimensions and containing certain critical elements.  The NAE does not 
appear to be β-PdD as previously thought. Many people rejected the idea because they 
thought the lattice conditions in β-PdD were too simple and too well understood to 
support an explanation. The real conditions turn out to be far more complex.  
 
To shorten the description given here, much information has been left out. The reader is 
directed to technical details published in the cited papers.  These papers can be accessed 
in full text at www.LENR-CANR.org where over 3170 citations and over 330 full text 
papers are available.  This brief paper emphasizes the Fleischmann-Pons effect and 
studies done in the U.S. because it was written for and submitted to the DoE Panel that 
revaluation the claims for cold fusion on August 23, 2004. 
 
EVIDENCE 
 
Personal Experience 
I first got involved in the subject about 15 years ago while working at the Los Alamos 
National Laboratory (LANL).  Studies done first LANL and later at Energy K. Systems, 
Inc. (EKS, Inc), a private laboratory, convinced me that anomalous energy [2] or tritium 
[3] can be produced when a suitable palladium cathode is electrolyzed in a solution of 
D2O containing LiOD.  This is a replication of the Fleischmann-Pons (F-P) effect, as  

FIGURE 1. Tritium production in a F-P cell compared to an identical cell being 
electrolyzed at the same time.  A fraction excess tritium of 2.0 means that the tritium 
content doubled over the initial tritium content always found in heavy-water.  Closed, 
sealed cells containing a catalyst were used. Work was done at LANL. 
 
described first by these authors in 1989[4-6].  Figure 1 shows an example of tritium being 
produced in a F-P cell at LANL that is compared to the behavior of a similar cell  
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that did not produce tritium even though it was electrolyzed at the same time.  
Subsequent work demonstrated that tritium appeared only in the electrolytic solution, 
rather than in the evolving D2 gas. This behavior was in direct contrast to the behavior of 
tritium known to be dissolved in a palladium cathode, which always left the cell along 
with evolving D2 gas.  The effect of tritium in the surrounding air was also explored and 
found to be inconsistent with the behavior observed when anomalous tritium was 
produced. Thus, anomalous tritium was shown not to result from contaminated 
palladium, did not come into the cell from the environment, and was produced within the 
cathode near its surface.   
 
An example of anomalous energy is shown in Fig. 2. This energy was produced by a 
batch of palladium that experienced very few cracks upon reaction with deuterium.  
Another batch obtained from the same source (Tanaka Metals, Japan) that had a much 
larger amount of cracking was inert.  Samples from the active batch produced anomalous 
energy at two other laboratories. [7, 8] Therefore, anomalous heat from the same material 
was replicated at three laboratories and was shown to be related to the amount of 
cracking. 

 FIGURE 2. Excess power produced in a F-P cell using a palladium cathode (4 cm2) that 
form few cracks.  Heat was measured using an isoperibolic calorimeter.  Notice that no 
excess was produced when applied current was less than 2.8 A.  The drop off after 310 
hours was caused by failure of the internal recombiner, for which a correction is shown.  
This study was made at LANL. 
 
This anomalous energy was later found to be produced at the surface of the cathode in 
isolated regions of deposited material. [9-14] Palladium is not necessary either as the 
basic material or as the deposited material, although its use can produce anomalous 
energy.  



 

 
These personal studies involve measurement of anomalous energy using a variety of 
calorimeter types. [15-17] Because rejection of the published claims is based on supposed 
errors in the measurement of anomalous energy, significant effort was made to identify 
and eliminate known errors.   In addition, the resulting insights have allowed a more 
realistic evaluation of other reports.[18, 19]  
 
Universal Experience and Patterns 
 
Examples of Replications:   
Table I lists a sampling of reported replications for the Fleischmann-Pons effect.  Most of 
the studies observed anomalous heat being produced by more than one sample.  Many 
other examples can be cited, but not all provided sufficient information to allow the 
studies to be evaluated or the listed values to be determined.  Of course, many samples 
failed to produce anomalous energy for various reasons, some of which are suggested 
below. 
 
D/Pd Ratio of Palladium Substrate is Important: 
Very careful work at SRI first demonstrated the effect of average deuterium content 
within the palladium cathode. [20-23] One example is shown in Fig. 3.   

 
FIGURE 3. Anomalous power produced by a F-P cell as a function of average 
composition of the palladium cathode.  Composition was measured using change in 
resistance of the entire cathode and power was measured using a flow-type calorimeter.  
Work was done at SRI. 
 



 

Other laboratories reported similar behavior. [24-30] In general, the average D/Pd ratio 
must exceed a critical value before anomalous energy can be expected.  However, the 
exact value for this composition depends on the shape and size of the cathode, on the 
nature of surface deposits, and on the method used to determine the average composition.   
 
The average composition is much less than the composition at the surface region where 
the nuclear process actually occurs.[22] The surface composition has been measured on 
several occasions [29, 31, 32] to give a value of D/Pd in excess of 1.5.  This surface 
composition is significantly increased by application of increased current density, as 
shown in Fig. 4, even though the average composition is increased only slightly.  Also, as 
expected, the thin layer and bulk palladium have essentially the same composition at low 
applied current. 

FIGURE 4. Average composition of a 2 µm layer of palladium on platinum as a function 
of applied current density in a F-P cell.  The surface composition is compared to a typical 
average composition of a 1 mm thick palladium cathode as a function of applied current.  
Work was done at EKS, Inc. 
 
From this behavior it is safe to assume that increased anomalous energy, resulting from 
greater applied current, is associated mainly with a change in surface composition, which 
is only partially related to the average composition of the entire sample.  In addition, the 
surface region contains many elements besides palladium and deuterium – lithium and 
platinum being at especially high concentrations. [33-50] Consequently, it is reasonable 
to assume that difficult replication stems from a low probability for forming a suitable 
collection of deposited elements with correct morphology and proper crystal size. 
 
 
Critical Current Density is Required to Produce an Effect: 
As early as 1991, the relationship between applied current density and resulting 
anomalous power production was known, as shown in Fig. 5.[51] Although these studies 
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show a range of values, they are all sensitive to applied current density and fall below an 
apparent upper limit as designated by the red line, which is a straight line when plotted on 
a linear scale.  Since then, this relationship has been seen repeatedly, with one example 
plotted in Fig. 6[52] and another shown in Fig. 7[53]. This critical current density is 
required to initiate the effect only when solid palladium is used.  In addition, the value 
depends on the geometry of the cathode.  However, deposits placed on platinum do not 
show this critical value.  Instead, anomalous power starts just as soon as a little current is 
applied (Fig. 8). [10] 
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FIGURE 5. Comparison between studies showing the effect of applied current density 
on excess power density for a F-P cell.  The study by Liaw et al. used molten salt made of 
potassium-lithium-deuterium and a palladium anode at which deuterium was deposited.  
 
As the applied current is increased, temperature of the cathode will also increase.  
Because increased temperature results in increased excess power, the reported results will 
depend on both variables, the latter one being sensitive to the design of the calorimeter.  
Therefore, because of variations in surface characteristics and temperature, different 
studies will show somewhat different behavior.  
 



 

 
 
FIGURE 6.  Effect of applied current density on anomalous power production. A cell 
containing H2O instead of D2O does not show the effect. Work was done at SRI. 

FIGURE 7.  Effect of applied current on anomalous power production in a F-P cell.  This 
is a sample of 1mm thick palladium (4 cm2) obtained from Japan.  Excess power 
gradually increased as the sample was exposed to applied current.  A flow-type 
calorimeter was used at EKS, Inc. 
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FIGURE 8.  Anomalous power as a function of applied current using a platinum cathode 
on which an active deposit had formed.  Application of sufficient current caused 
anomalous heat to disappear.  However, the sample could be reactivated after being 
boiled in water (159 h and 376 h). Power was measured using a flow-type calorimeter 
that was calibrated before and after the study. Work was done at EKS, Inc. 
 
Special Palladium is Required: 
Success is critically related to the properties of the palladium.  Some batches show a high 
success rate and others are uniformly inert.  Table II lists a few examples.  Very pure 
palladium seems to be less frequently active than material that is less pure.  Part of the 
problem involves formation of cracks,[54, 55] which prevent material from achieving the 
required critical composition.[56] In addition, surface deposits including bacteria can 
interfere with loading.[57] 
 
Various Methods Found to Work: 
F-P first used electrolysis to react the palladium cathode with deuterium.  Subsequent 
studies show that deuterium could be applied using ultrasonic methods [58], using D2 gas 
[59-61], by diffusion of D+ through various complex oxides under electrical potential 

3.02.52.01.51.00.50.0
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

After being deloaded (376 h)
After 1.5 A (308 h)

Initial (0.2 h)

After 1.5 A (70 h)
After being deloaded (159 h)

Initial Calibration

Final Calibration

APPLIED CURRENT, A

EX
C

ES
S 

PO
W

ER
, W



 

[62-66] [67], and by D+ and/or D2
+ ion bombardment using low voltages[68-74].  Plasma 

generation within a liquid also appears to initiate nuclear reactions in the cathode 
material. [75-79] Even simple life forms appear to initiate certain anomalous nuclear 
reactions1. [80-82] In other words, the nuclear reactions are not unique to how deuterium 
or hydrogen is introduced into a suitable assembly of atoms.  
 
Evidence for Nuclear Products: 
Anomalous energy must have an identified source before its existence can be accepted.  
The amounts being reported are too large to be explained by chemical based processes 
[83] or by any prosaic process suggested thus far. [19] This leaves a nuclear source as the 
most likely possibility. 
 
Although various nuclear products and emissions have been detected, only the production 
rate of 4He is consistent with measured power production, which has been replicated by 
six different studies. [84-89] An example showing the relationship between power 
production and helium production can be seen in Fig. 9.   The result is within a factor of 
two of the expected relationship based on known energy resulting from the D + D = 4He 
reaction.  If additional 4He that is expected to be retained by palladium were taken into 
account, the result would be even closer to the expected value.  An additional study, 
shown in Fig. 10, using gas loaded palladium deposited on carbon (a typical chemical 
catalyst) gives a similar quantitative relationship between produced energy and observed 
helium.   
 
Evidence for other kinds of nuclear reactions has been reported.  This includes various 
transmutation reactions involving light and heavy hydrogen that convert various elements 
to other elements, for which only a few citations are given. [38, 41, 90-96] [97-106] 
However, these reactions produce so little energy, they do not have a practical 
application.  Nevertheless, they do suggest the existence of a novel nuclear process.  
 
Neutron and charged particle emission have also been detected.  However, these products 
are in such small amounts that their relationship to the F-P effect is unknown and may not 
be important other than to reveal another novel process. 
 
 

                                                 
1 This very unusual and difficult to believe claim is supported by some very careful 
studies that need to be evaluated before the claims are rejected. 



 

 
FIGURE 9.  Excess power compared to atoms of He/watt-sec.  The dashed line shows 
the expected behavior if energy/fusion event is 24 MeV.  Data from these two 
independent studies agree well and are within a factor of two of the expected energy. 
 
Why it Works and Why it Doesn’t: 
Conventional thinking rejects the possibility of such low energy nuclear reactions 
occurring because no mechanism is known that would allow the Coulomb barrier to be 
overcome under these conditions.  In addition, the proposed production of helium does 
not also produce the expected gamma ray and the other fusion products (tritium and 
neutrons) are not seen in expected amounts.  In brief, the observations are not consistent 
with behavior observed when fusion is initiated at high energy.[107] Even if the process 
should occur at low energy, the proposed reaction would appear to violate conservation 
of momentum laws and require a unique mechanism to quickly couple the large amount 
of released energy to the lattice.  
 
Instead of using brute force, the reactions are proposed to involve subtle processes. For 
example, wave interaction [108], neutron generation [109], neutron release [110, 111], 
phonon involvement [112], electron involvement [113] or ion clusters [114] have been 
proposed.  However, no suggested mechanism explains all aspects of the phenomenon 
nor does any model allow significant predictions of previously unobserved behavior even 



 

though hundreds of theories have been proposed. Nevertheless, some approaches have 
been useful and may lead to eventual understanding. 
 
Difficulty in replication can be explained by failure to take into account several important 
variables.  First of all, production of anomalous energy requires sufficient time for active 
 

 
FIGURE 10.  Helium produced (as volume ppm) by finely divided palladium on carbon 
exposed to D2 gas compared to the amount of excess energy being measured.  The 
amount of excess energy is estimated because it is based on two different methods to 
arrive at the amount of anomalous power production. Work was done at SRI. 
 
deposits to form.  This can be a very slow process if the electrolyte is especially pure.  
Presence of even a small amount of light water (H2O) in the D2O will stop the reaction. 
Because D2O easily absorbs water from the air, cells must be carefully sealed.  A critical 
current density must be used to start anomalous energy production, as noted above.   
Finally, if palladium is used as the substrate, it must be obtained from a batch that does 
not crack when it reacts with deuterium. 
 
The easiest method for replication uses co-plating [115] of palladium on an inert metal 
substrate using a D2O electrolyte containing various salts.  This method involves adding 
PdCl2, for example, to the electrolyte so that palladium plates on the cathode as fully 
saturated deuteride.  An active deposit can also be applied outside of the active cell using 
a suitable electroplating bath, by vapor deposition, or by sputtering.  However, all 
methods for applying an active surface still fail on many occasions.  The reasons for this 
failure are only now being understood. 
 



 

CONCLUSION 
 
The “cold fusion” claims have been replicated many times by laboratories all over the 
world, in spite of claims to the contrary.  Methods required to increase success are 
known, and several consistent patterns of behavior have been observed by different 
laboratories.  In addition, the nuclear process producing anomalous energy has been 
identified and replicated.  Therefore, major requirements for acceptance by conventional 
science have been met.  However, a satisfactory theory has not yet been demonstrated. 
 
Many examples can be cited for acceptance of novel processes without supporting theory. 
Whether absence of an explanation is critical to believing these claims depends on how 
much of an exception to the usual acceptance process should be applied to cold fusion. 
________________________________________________________________________ 

TABLE I 
List of Studies Reporting Anomalous Energy Using the Fleischmann-Pons Method 

   
AUTHOR DATE           TYPE(a) CLOSED/

OPEN(a) 
PRECISION 
       W 

MAXIMUM AP(b)   
W,     mA/cm2 

Huang et al. 
[116] 

1989       Flow-type(c)     open  
 

      ±0.05 2.3,     450 

Kainthla et 
al. [117] 

1989       Isoperibolic(d)     open       ±0.05 1.08,    468 

Samthanam 
et al. [118] 

1989      Isoperibolic(e)     open           ? 1.54,     63 

Appleby et 
al. [119] 

1990      Seebeck(e)     open     ±0.000001 0.0457, 600 

Beizner et al. 
[120] 

1990 DW Isoperibolic 
(d) 

    open     ~0.1  ~1,  ~500 

Eagleton and 
Bush [121] 

1991  Isoperibolic(d,f)    closed     ±0.3   6.0,  450 

Scott et al. 
[122] 

1990   Flow-type(c) open and 
closed 

    ±0.2   2.0,   600 

Fleischmann 
et al. [5] 

1990  Isoperibolic(d)      open     <±0.01   2.8,  1024 

Hutchinson[1
23] 

1990  DW Isoperibolic     open     ±1.0     4,  250 

Zahn[124] 1990  Double cell     
comparison 

     open        ?   ~2,  124 

Miles et al. 
[125] 

1990   DW 
Isoperibolic(d) 

     open    ±0.05  0.3,  100 

Oriani  et al. 
[126] 

1990     Seebeck(d) open   ±0.2  3.2,  >1000 

Yang et al, 
[127] 

1990 A primative flow-
type 

open    ~±5  9.1,   ? 



 

Zhang[128] 1990     Seebeck open ±0.00001 0.15,   ~15 

Bertalot et 
al.[129] 

1991     Seebeck open ±0.005 0.08,   650 

Bush et al. 
[130] 

1991  Isoperibolic open ~±0.05 0.52,  227 

McKubre et 
al. [131] 

1991  Flow-type(d) closed ±0.05 0.5,   660 

Noninski[132
] 

1991   Isoperibolic open   ? 2.6,  80 

Yun et al. 
[133] 

1991   Seebeck(e) Open and 
closed 

   ±0.01   0.24,  500 

Bertalot et al. 
[134] 

1992  Flow-type open  ±0.025   3.0,  190 

Gozzi et al. 
[135] 

1992  Isoperibolic(g) open   ±0.63   9.0,  ? 

Hasegawa et 
al. [136] 

1992 Temperature of 
cathode 

closed  ~±0.1  ~0.7,   ? 

McKubre et 
al. [20] 

1992  Flow-type(d) closed ±0.1 1.2,  440 

Ota et al. 
[137] 

1992  Flow-type closed ~±0.1 1.0,    ? 

Storms[2] 1993  Isoperibolic(g) closed ±1.0 7.5,  700 

Okamoto et 
al. [138] 

1994  Flow-type open ±3.5 6.0,  66 

Storms[139] 1994 Isoperibolic(d,f) closed ±0.5 2.0,   600 

Bertalot et al. 
[140] 

1995 Flow-type(e) open   ? 11,   2000 

Takahashi et 
al. [141] 

1995 Double cell 
comparison(f) 

open ±0.65 3.5,   ? 

Kamimura et 
al. [142] 

1996 Isoperibolic(g) closed ±0.25 0.700,  800 

Yasuda et al. 
[143] 

1996 Flow-type closed ±0.05   5,      ? 

Ota, et al. 
[144] 

1996 Flow-type(d) closed ±0.075 0.29,   750 

Szpak et al. 
[115] 

1999 Isoperibolic open ±0.01 0.4,   133 

Storms [10] 2001 Flow-type(d) closed ±0.03 0.8,   0.75 

 
(a) * With a flow-type calorimeter, power is measured by flowing water through a jacket 
that surrounds the cell, or a coil inside the cell, and recording the flow rate and the 



 

temperature change of the water stream.  Although this is an absolute method, it must be 
calibrated because the water cannot capture all of the heat. 
*The isoperibolic calorimeter determines power production by measuring the temperature 
drop across the cell wall.  The device must be calibrated and is accurate only when the 
measured temperature represents the average ∆T. 
*The double-wall (DW) isoperibolic calorimeter uses an additional thermal barrier 
outside of the cell across which the temperature drop is measured. The device must be 
calibrated, but is independent of any temperature variation within the cell. 
*The Seebeck calorimeter determines power production by measuring a voltage 
generated by the temperature difference between the inside and outside of its walls.   In 
this device, all walls are sensitive to this temperature difference, hence any energy that 
escapes the enclosure will generate a voltage proportional to the amount of power being 
lost.  The device must be calibrated and is independent of the cell temperature. 
* Double cell comparison uses two nearly identical cells, one of which is active and the 
other is assumed to make no AP.  Heat production is based on the temperature difference 
between the two cells and accuracy depends on the two cells remaining identical in their 
properties.  
*An open cell allows the generated gases to escape.  A closed cell causes the gases to be 
converted back to water using an internal recombiner. 
(b) Although only one value is given, frequently several different samples of palladium 
were reported to produce anomalous power (AP).  The amount of anomalous energy (AE) 
is highly variable, depending on how long the active sample was studied. 
(c) Calibration could have been unstable. 
(d) Calibrated with internal heater and checked with Pt cathode and/or H2O based 
electrolyte 
(e) Calibrated only with internal heater 
(f) Mechanical stirring used 
(g) Calibrated using only an inert cathode. 
 



 

 
________________________________________________________________________ 

TABLE II 
 

Example of How the Palladium Source Affects Anomalous Energy Production 
 

                        SOURCE                    EXCESS ENERGY 
                                                Success           Total 
            Boron Containing 
      Samples made at NRL  7  8 
 J-M  Pd              15  26 
 NRL Pd    1  6 
 WESGO Pd   0  6 
 NRL Pd-Ag   0  3 
 IMRA Pd-Ag   0  2 
 Pd-Cu    0  2 
 Pd-Ce    2  2 
 Co-deposition             2  34 
 
 J-M: Johnson and Matthey Company 
 NRL: Naval Research Laboratory 
 IMRA: IMRA, Japan 
 Co-deposition: Pd plated from solution during calorimetry measurement 
 WESCO: A secondary supplier used early in the work 
Work done at Naval Air Warfare Center Weapons Division, China Lake, CA [88] 
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