Are Oxide Interfaces Necessary for FPE?

D.D. Dominguez, D.A. Kidwell, D.L. Knies, J.H. He and K.S. Grabowski U.S. Naval Research Laboratory Washington, DC 20375 and V. Violante ENEA Frascati, Italy

> Dawn.Dominguez@nrl.navy.mil (202)767-2998

16th International Conference on Condensed Matter Nuclear Science - Chennai, India

February 10, 2011

Theoretical Arguments Against D-D Fusion

- A.B. Hassam and A.N. Dharamsi, "Deuterium Molecule in the Presence of Electronic Charge Concentrations: Implication for Cold Fusion," *Phys. Rev. A*, 40 (1989) 6689-6691.
- Z. Sun and D. Tomanek, "Cold Fusion: How Close Can Deuterium Atoms Come Inside Palladium?", *Phys. Rev. Lett.*, **63** (1989) 59-61.
- F. Liu, B.K. Rao, S.N. Khanna and P. Jena, "Nature of Short Range Interaction Between Deuterium Atoms in Pd," *Solid State Commun.*, **72** (1989) 891-894.
- X.W. Wang, S.G. Louie and M.L. Cohen, "Hydrogen Interactions in PdH_n (1≤n≤4)," *Phys. Rev. B*, **40** (1989) 5822-5825.
- J.W. Mintmire, B.I. Dunlap, et al., "Chemical Forces Associated with Deuterium Confinement in Palladium," *Phys. Lett. A*, **138** (1989) 51-54.

Preliminary Results:

NVT Born–Oppenheimer MD Calculation at 100K

Initially add two deuterium atoms in O-sites in the unit cell

Preliminary Results: D_2 molecules forms in PdO with D-D separation around 0.85 Å.

Outline – Are Oxides Interfaces Necessary for FPE?

- Describe Electrochemical cells/calorimeters
- Materials investigated/morphology
- Results Oxide interface formation
 - what we see
 - what we don't understand
- Model of Pd oxide interface interacting with D₂
- Conclusions

High Current Density Closed Cells

We currently use two different catalysts: 0.5% Pd on alumina and Johnson Matthey Pt electrode on Carbon Fiber Paper

Material Development for Electrochemical Studies

- Traditional Rolling, Annealing, Etching
- Ultrasound Etching
- Electrochemical/Chemical De-alloying
- Templated Materials
- Oxidation Followed by D₂ Reduction
- Ion Implantation (Ar, He)
- Impurity additions Raney Ni (50:50 Ni:Al alloy), Al powder, Fe powder, Ni nanopowder, alumina, silica, cobalt chloride, bismuth citrate, Pd zeolite, Pd ammonium chloride, rhodium sulfate, boric acid, phosphoric acid, sodium tetraborate, Nal, KI, sodium dichromate, lithium carbonate, polyethylenimine, thiourea, uranyl acetate

Grating/Labyrinth Structure

L64 - Energetic's "Gold Standard"

- Large grains
- < 1 um deep grooves</p>
- Large power gain for many hours

Morphology Important !

Ultra-Sound Etched ESPI Cathode

No excess heat at <250 mA/cm² for 3 foils

Nanoporous Materials

Electrolysis of Nanoporous Pd

- Pd₂₀Co₈₀/Pd/Pd₂₀Co₈₀ sandwich bonded by cold rolling and thermal annealing
- Electrochemical dealloying in 0.1M H₂SO₄
- Coarsening of porous structures by vacuum annealing at 500°C for 120 min

Pd Nanoparticles in Nanoporous Gold

- Au₃₀Ag₇₀/Au/Au₃₀Ag₇₀ sandwich bonded by cold rolling and thermal annealing
- Chemical dealloying in conc. HNO₃
- Soaked in PdCl₂+HCl solution overnight
- Reduction of Pd in 760 Torr H₂ at 400°C for 30 min

No excess heat observed

Other Cathode Materials Under Development

Pd 98%, Pt 1% and Rh 1%

Recent Success Producing L64-type Morphology

Well defined grain boundariesPartial coverage of labyrinth-like structure

Cathode Materials Investigated

		Energetics	Hart	DTA	Total
Pd/LiOD					
	Platexis	2			
	Holland Moran	1			
	Vittorio	10	15	3	
	ESPI	7	6		
	Alfa Aesar		1		
	Goodfellow	2	18		
	G&S		3		
	Total	22	43	3	68
Pd/LiOH					
	Vittorio	2			
	ESPI	2	4		
	Alfa Aesar		2		
	Goodfellow		3		
	Total	4	9		13
misc					
	Ni/LiOH		1		
	Goodfellow Pd/KOD		1		
	Vittorio Pd/H2SO4		1		
	Total		3		3

Cathode Materials Investigated (continued)

		Energetics	Hart	DTA	Total
x/LiOD					
	Pd/0.25% B		2		
	Pd/0.75% B		2		
	Pd-C nanofoam		1		
	Pd nanoparticles in		1		
	nanoporous Au				
	Nanoporous Pd		1		
	Ni		3		
	Nb		3		
	Та		2		
	Pd/5% Ru		2		
	Ni/Pd		2		
	Ni/Pd/Ni		1		
	Pd 98%/Pt 1%/Rh 1%		2		
	Pt	6	5		
	Total	6	27		33
Grand Total					117

Electrolytic Loading:

Original Fleishmann and Pons Approach

- Many experiments, over 24 months, with consistent results
 > Power_{in}=Power_{out}

Hart Fitting Coefficients

Calorimeter calibration stable over many months!

Analysis of trace impurities

Inductively-Coupled Plasma Mass Spectrometric Analysis

- Older lots of Palladium, that appeared to produce substantial heat, likely had only ONE source – Engelhard
- ICP-MS analysis shows different impurity profiles than current palladium lots
 - Older lots appear to have recycled Pd from catalytic converters as rhodium and platinum are present
 - Current lots are much purer in these elements but have zirconium, yttrium, and hafnium present
 - Likely change in crucibles for melting to Zirconia
 - Rhodium prices may drive recovery as a separate element
- Are the impurities responsible for FPE??

Examples of trace impurities

Inductively-Coupled Plasma Mass Spectrometric Analysis

Goodfellow Pd Cathode

Hart Calorimeter - No Addition

Do Aluminum Additions Produce Excess Heat? Hart Calorimeter

Is Heat Redistribution Responsible for Excess Heat?

Recombiner Fraction of Total Power

er

Two Resistor Calibration of Hart Calorimeter

Worst Case Scenario

At 8W input power, ±50 mW error is worse case with all heat generated at one end of cell (top or bottom)

Apparent excess of 0.5-1% for Goodfellow 7-4 Pd cathode might be attributed to heat redistribution in the cell upon the addition of AI powder

White Material Isolated from Hart Cells:

Lithium Aluminum Hydroxide

XRD of Goodfellow Pd with Possible Excess Heat

Pd 95%, Ru 5% Hart Calorimeter

Goodfellow 2-1

Energetics Calorimeter - No Addition

L71 (Half of Electrolyte Removed/Pd Cathode Partially Uncovered) Energetics Calorimeter

Model of Possible Reaction Requirements

Support oxide interacting with palladium nanoparticle

A strong electric field might be a requirement for FPE

Other Supporting Evidence for the Role of Oxide Interfaces in FPE

- M. McKubre 200 ppm addition of aluminum or silicon in metallic or oxide form
- M. Miles glass tube (silica)

- V. Violante glass cell (silica)
- F. Celani Pd wire coated with Pd nanoparticles (nanoporous alumina)
- Cravens & Letts "pixie dust"
- Arata Zr, Ni, Pd oxides
- D. Kidwell Pd zeolites (aluminosilicates)

Conclusions

- Older, more successful, Pd Materials all had a common production and different impurity profile than current Pd
 - Trace elements may be important for FPE
- Pd morphology may be a necessary but insufficient condition for FPE
- Many different cathode materials investigated in both Hart and Energetics calorimeters
 - No convincing positive results found
 - Some intriguing results keep us motivated to continue
- Oxide interfaces may be necessary for the production of FPE
 - Addition of materials that form oxide interfaces appears helpful
 - The requirements and generation mechanism for FPE are unclear

The views, opinions, and/or findings contained in this presentation are those of the presenter and should not be interpreted as representing the official views or policies, either expressed or implied, of the Naval Research Laboratory or the Department of Defense.

Questions