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Preliminary Results:

NVT Born—Oppenheimer MD Calculation at 100K
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Initially add two deuterium
atoms in O-sites in the unit cell

Preliminary Results: D, molecules forms in
PdO with D-D separation around 0.85 A.




Outline — Are Oxides Interfaces Necessary for FPE?

m Describe Electrochemical cells/calorimeters
= Materials investigated/morphology
m Results — Oxide interface formation
= what we see
= what we don’t understand
= Model of Pd oxide interface interacting with D,
m Conclusions



ee Energetics Closed Cells Three Hart Closed Cells
= —— based on the ENEA / Violante design
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We currently use two different catalysts: 0.5% Pd on alumina
and Johnson Matthey Pt electrode on Carbon Fiber Paper



Material Development for Electrochemical Studies

m [raditional Rolling, Annealing, Etching
= Ultrasound Etching

m Electrochemical/Chemical De-alloying
= Templated Materials

= Oxidation Followed by D, Reduction

= |lon Implantation (Ar, He)

m |Impurity additions — Raney Ni (50:50 Ni:Al alloy), Al powder,
Fe powder, Ni nanopowder, alumina, silica, cobalt chloride,
bismuth citrate, Pd zeolite, Pd ammonium chloride, rhodium
sulfate, boric acid, phosphoric acid, sodium tetraborate, Nal, KiI,
sodium dichromate, lithium carbonate, polyethylenimine,
thiourea, uranyl acetate



Grating/Labyrinth Structure
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L64 - Energetic’s “Gold Standard” Ultra-Sound Etched ESPI Cathode
= Large grains * No excess heat at <250 mA/cm? for 3 foils

= <1 um deep grooves
= Large power gain for many hours

Morphology Important !




Nanoporous Materials

Electrolysis of Nanoporous Pd Pd Nanoparticles in Nanoporous Gold

+ Pd,,Cog,/Pd/Pd,,Cog, sandwich bonded Au;,Ag,./Au/Aus,Ag,, sandwich bonded

by cold rolling and thermal annealing by cold rolling and thermal annealing
» Electrochemical dealloying in 0.1M H,SO, + Chemical dealloying in conc. HNO,
» Coarsening of porous structures by « Soaked in PdCI,+HCI solution overnight
vacuum annealing at 500°C for 120 min . Reduction of Pd in 760 Torr H, at 400°C
for 30 min

No excess heat observed




Other Cathode Materials Under Development

/Carbon nanotubes coated with Pd

Pd foil after oxidation/reduction
procedure

High surface area cathode
produced by Co-Deposition

/

Nanotip Arrak

Tip radii of curvature ~ 25nm



Pd 98%, Pt 1% and Rh 1%

Recent Success Producing L64-type Morphology

= \Well defined grain boundaries
» Partial coverage of labyrinth-like
structure




Cathode Materials Investigated

Energetics Hart DTA Total

Pd/LiOD

Platexis 2

Holland Moran 1

Vittorio 10 15 3

ESPI 7 6

Alfa Aesar 1

Goodfellow 2 18

G&S 3

Total 22 43 3 68
Pd/LiOH

Vittorio 2

ESPI 2 4

Alfa Aesar 2

Goodfellow 3

Total 4 9 13
misc

Ni/LiOH 1

Goodfellow Pd/KOD 1

Vittorio Pd/H2SO4 1

Total 3 3




Cathode Materials Investigated (continued)

Energetics Hart DTA Total

x/LiOD
Pd/0.25% B
Pd/0.75% B
Pd-C nanofoam

P P NN

Pd nanoparticles in
nanoporous Au
Nanoporous Pd

Ni

Nb

Ta

Pd/5% Ru

Ni/Pd

Ni/Pd/Ni

Pd 98%/Pt 1%/Rh 1%

Pt 6
Total 6 33
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Grand Total 117




Electrolytic Loading:

Original Fleishmann and Pons Approach

Many experiments, over 24 months, with consistent results
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Hart Fitting Coefficients

Slope (V/W)
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<1% variation in slope since 10/01/10
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12/28/10

Calorimeter calibration stable over many months!




Analysis of trace impurities

Inductively-Coupled Plasma Mass Spectrometric Analysis

m Older lots of Palladium, that appeared to produce substantial
heat, likely had only ONE source — Engelhard

= |CP-MS analysis shows different impurity profiles than current
palladium lots

o Older lots appear to have recycled Pd from catalytic converters as
rhodium and platinum are present

o Current lots are much purer in these elements but have
zirconium, yttrium, and hafnium present
mLikely change in crucibles for melting to Zirconia
m Rhodium prices may drive recovery as a separate element

= Are the impurities responsible for FPE??




Examples of trace impurities

Inductively-Coupled Plasma Mass Spectrometric Analysis
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Goodfellow Pd Cathode

Hart Calorimeter - No Addition
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Do Aluminum Additions Produce Excess Heat?
Hart Calorimeter

Goodfellow 74 10-08-10

10 2
Pin
9 ||l—Pout added Al powder
—% excess $ 119
8 \ K
250 mA/cm? -+ 1
7 1 M v
p— W =
a 5 ‘ LM M adls Lkt Lo dilan thaduthado b Mw 0 8
S N’ TRy, "
(o] n
o 4 - _ L : 1 05 5
3 e
4 -1
2 L
1 ’ 4 -1.5
Q0 ] ! ! =
0 25 o0 75 100 125 150

Time (h)




|Is Heat Redistribution Responsible for Excess

Hart Calorimeter
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Two Resistor Calibration of Hart Calorimeter

Worst Case Scenario
| |
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At 8W input power, 50 mW error is worse case with all
heat generated at one end of cell (top or bottom)

Apparent excess of 0.5-1% for Goodfellow 7-4 Pd cathode might be
attributed to heat redistribution in the cell upon the addition of Al powder




White Material Isolated from Hart Cells:

Lithium Aluminum Hydroxide

EHT = 2000 kV Date 4 May 2010
WD = 18mm Time 181817
Signal A = SE2 Photo No_ = 2017

100nm X = 80859 mm Stage atR=3444°

'_.' Mag= 4000 K X x ‘ e
9 Stage atyY =64 195 mm Stage & T= 300°
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XRD of Goodfellow Pd with Possible Excess Heat
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Pd 95%, Ru 5%

Hart Calorimeter
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Goodfellow 2-1

Energetics Calorimeter - No Addition

Goodfellow 2-1 06-29-10
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L/71

(Half of Electrolyte Removed/Pd Cathode Partially Uncovered)'
Energetics Calorimeter

L71 with half electrolyte removed 05-07-10
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An apparent excess of 5-10% is intriguing, BUT heat redistribution in the
Energetics cell upon addition of Raney Ni needs to be examined!!!




Model of Possible Reaction Requirements

Support oxide interacting with palladium nanoparticle

Matrix

Pd Particle

Strong electric fields — up to 95V/nm
C. Otero Arean, et al., “Thermodynamics of hydrogen
adsorption on the zeolite Li-ZSM-5", Chemical Physics
Letters 370 (2003) 631-635.

A strong electric field might be a requirement for FPE




Other Supporting Evidence for the Role of
Oxide Interfaces in FPE

= M. McKubre — 200 ppm addition of aluminum or silicon Iin
metallic or oxide form

= M. Miles — glass tube (silica)
= V. Violante — glass cell (silica)

m F. Celani — Pd wire coated with Pd nanoparticles
(nanoporous alumina)

m Cravens & Letts — “pixie dust”
= Arata-— Zr, Ni, Pd oxides
= D. Kidwell — Pd zeolites (aluminosilicates)



Conclusions

Older, more successful, Pd Materials all had a common production
and different impurity profile than current Pd

" Trace elements may be important for FPE
Pd morphology may be a necessary but insufficient condition for FPE

Many different cathode materials investigated in both Hart and
Energetics calorimeters

® No convincing positive results found
" Some intriguing results keep us motivated to continue

Oxide interfaces may be necessary for the production of FPE
= Addition of materials that form oxide interfaces appears helpful
m The requirements and generation mechanism for FPE are unclear

28
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