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Excess of Power iIs a Threshold Effect

Excess of power vs. D concentration: milestone in the hystory of CMNS.
1992: McKubre (SRI, USA), Kunimatzu (IMRA, Japan).

Excess of power reproducibility requires reproducibility of high loading of deuterium.



High Loading Reproducibility and then Excess of Power
Production within Deuterated Metals are Controlled by
Equilibrium and not Equilibrium Phenomena

__l_ Uy = llqu Equilibrium condition
|

Chemical potential of hydrogen in the metal lattice is strongly affected by the
force fields that modify the free energy of the system like stress:
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Absorption of hydrogen isotopes inside a metal lattice is also a not - equilibrium
problem because of the diffusive process produced by a chemical potential
gradient. In presence of stress mass transfer is described by:
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Calculations Results
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Metallurgy and Loading

Theory showed that self induced stress, created by concentration gradients,
reduce hydrogen solubility in metals.

Metalj_h[gical treatments have been studied to reduce the above mentioned effects.

' 2 o Cold worked and annealed at
T iy 850 °C for 1 hr.

=

cold worked Pd foil. Cold worked and annealgd
at 1100 °C for 5 hr Pd foill.



D/H Concentration Measurement as Resistance Measurement
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Loading evolution into a treated Pd sample.

Baranowsky curves.
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Annealing temperature effect on H loading in Pd.

Self induced stress, created by very steep concentration gradients, makes
impossible to achieve the concentration threshold D/Pd > 0.95 giving excess of
power production.

A Proper microstructure of Pd due to metallurgical treatment allows high D
loading.
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Flow Calorimetry on Closed Cells with Recombiner

W = coolant mass flow rate



ENEA Flow Calorimeter
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Memmert Calorimetric box (£0.05°C) + Haake thermostatic bath +Bronkhorst
high precision mass flow meter + HP-4263 LCR Meter. Measure limit: 50 + 15 mW



Flow Calorimeter FEM Analysis
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Finite element modelling has applied to design the calorimetric system
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Symmetric electrochemical cell :Pt-foil/Pd-foil/Pt-foil
(20x10mmx50um Pd).



Reference Experiments with Hydrogen at ENEA
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Input and output of power during electrochemical loading
of hydrogen into Pd foils. Calorimeter efficiency = 97.5%.



Energy & power (input and output) during calibration with H20 0.1 M LiOH
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Plot of energy & power (input and output) for calibration with H,0 0.1 M LiOH.




Flow Calorimeter Calibration Curve

Pout mw

Pout=a AT+b

a=981.33473969
b=-2892892517

In principle flow calorimetry doesn't require calibration




Excess of Power

C1 and C3 Experiments
i

Excess of Power Experiment C1
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Excess of Power and Excess of Energy in C3 Experiment
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10000000 : P . 5‘

2000000

-L

——p———

6000000

——r—p——

Energy mlJ

|
A

4000000

Excess Power -mW-

——p——

[N TR TR [N SR TR DU MU DI NN SRR NN S S S
L -

| ISR IIIIput EHEI g"]
2000000 L ,

WRIN T YR L") T
10000 20000 30000 40000 50000 60000 70000

Time

C3 experiment: plot of energy & power (input and output)




Excess of Power at SRI
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SRI results by using a treated Pd foil.

Similar and enhanced results have been obtained by Dr. T. Zilov
(Energetics Technology) by using the same materials.



RENEIE

Why a trigger ?

Two excesses of power have been observed over 9 experiments although the
achieved D concentration in Pd (atomic fraction) has always been larger
than 0.9.

The loading threshold D/Pd > 0.9 is clearly only a necessary condition.



Plasmons-Polaritons Laser Triggering

According to the idea that collective electron oscillations have a key role in
LENR processes a proper trigger has been introduced to create surface
| plasmons (polaritons).

Surface plasmons are quantum of plasma oscillations created by
the collective oscillation of electrons on a solid surface.

Surface plasmons may be generated by mechanisms able to produce
charge separation between Fermi level electrons and a background of
positive charges (i.e. lattice atoms):

1) Electrons beam.

2) Laser stimulation.

3) Lattice vibrations.

4) Charged particles interacting with a surface.



Coupling by Roughness

= Zsin6+AK, =K,
C

o (rad/s)

a is the surface corrugation
lattice parameter.

x 0.5x10°

Shift of the incident radiation wave vector produces plasmons excitation:
a proper corrugation of the surface creates the required shift.



Isoperibolic Calorimetry under Laser Triggering
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Calorimetric system for laser triggering ~ Electrochemical cell for laser triggering
experiments (T Box = Set p. + 0.15 °C) Experiments. He leakage < 10719 mbar I/s.
Current = 5 - 400 mA

Pd foil (20x10 mm x 50 um) cathode, spiral Pt wire anode.
Voltage =2-15V



Electrochemical Cell FEM Analysis to Design the Calorimetric System
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Electrochemical Cell FEM Analysis to Design and Optimize
the Isoperibolic Calorimetric System for Laser Triggered
Experiments
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Isoperibolic Calorimetry for Laser Triggered
Experiments.

Calibration is mandatory

|

| Calibration based on the average of the 2 PT-100 temperature values
obtained by means of electrolysis in LiOD.
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Calibration of the isoperibolic calorimeter



Laser2 Experiment

23.5 kJ of produced energy: 17.3 MJ/ mol Pd

Teme hr Time (h)

Evolution of the input and output power, last Evolution of loading (normalized resistance).
300 hr under laser irradiation (P-polarization),
632 nm, 5 mW. “He production estimate 6.12E+15.



Laser3 Experiment: Calorimetric Results

3.4 kJ of produced energy: 2.5 MJ/ mol Pd
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Laser3 Experiment: Calorimetric Results

3.4 kJ of produced energy: 2.5 MJ/ mol Pd
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Excess of power under laser triggering (laser Loading evolution (normalized resistance)
off effect). Hi-Lo current mode.
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Laser4 Experiment: Calorimetric Results
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Mass Spectrometer: JEOL GC Mate

JEOL mass spectrometer and inlet system.



MS - Inlet Line

All VCR fitting, He leakage of the line < 10-19 mbar I/s
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JEOL GC-Mate Resolution and Sensitivity

JEOL GC-MATE
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GC-Mate resolution up to 0.0001 AMU, sensitivity in SIM mode up to some Fg.




Laser Triggered Experiments: 4He Results

4-He Mass Spectrometry for Laser Triggered Experiments
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The expected amount of increasing of “He is in accordance with the energy gain by assuming a
D+D = 4He +24 MeV reaction.




Conclusions

- Heat effects are observed with D, but not with H, under similar (or
more severe) conditions.

- Heat bursts exhibit an integrated energy at least 10 x greater than the
—-léum of all possible chemical reactions within a closed cell.

| - Experiments reproducibility was significantly improved as a result of
material science study.

- Conditions are required to have a reproducible excess of power:

1) Loading threshold D/Pd > 0.9 (necessary condition).
2) Suitable material to have a reproducible loading above the threshold.
3) Trigger

4) Suitable status of the material to have coupling with trigger.

Three excess of power over three effective experiments have been achieved by
respecting these conditions!

The accordance between revealed “He and produced energy seems to be a clear
signature of a nuclear process occurring in condensed matter.
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Different surface different
blehavi()r

Palladium giving excess,
before electrolysis. (after) with Pd deposition
during electrolysis.

Not working palladium



SURFACE-SOLITON FORMATION IN METAL/ELECTROLYTE
INTERFACE ELECTRODYNAMICS

A, M. Brodskii UDC 541.135.5

Attention has been aroused in recent years by the amomalous enhancement of optical ef-
fects near metal/electrolyte interfaces, e.g., the Raman scattering of adsorbed molecules,
second-harmonic surface generation, and photoemission from the surface [1, 2], After
analyzing the experiments most workers believe that two effects must be realized simul-
taneously to explain these phenomena, viz., so-called chemical amplification (which arises,
in particular, from an increase in the transition moments owing to overlap of the electronic
vave functions of the molecule with state functions of the metal adatoms [3]) and electro-
dynamic amplification owing to the formation of surface plasmons (SP; see [4] and the litera-
ture cited there), However, much remains unexplained in the phenomena being discussed. It
is obscure, in particular, why for a significant enhancement of the optical processes occur-
ring near the surface, the two effects mentioned nust combine, and also why the enhancement
is observed at distances up to hundreds of angstroms from the surface, even though the in-
fluence of chemical amplification should be limited to atomic distances, The strong de-
pendence on a nunber of details of surface preparation also is difficult to explain,

In the present communication we offer an explanation for anomalous enhancement which
is based on the idea that solitons to which the SP combine are generated on the metal sur-
face, For its realization, this mechanism requires roughness, without which SP will not
form or decay to light, and at the same time it requires effects of the type of chenical
amplification, without which sufficiently strong nonlinearities in the field equations will
not arise. Also needed is a special surface organization. Tor a quantitative estimate, we
shall start from the following expression for the effect, S, of the electromagnetic field
in the medium:

§=S,-iSp In(1+16) =S

[4
(=Go+ GG, T'=-— (Ap+pA)+

2me

\. Frunkin In ctrochemistry, Acade
Trenslated from Elektroklis Vol. 22, No. 2, pp. 2 I y, 1986, Original
article subnitted Dec 9
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