AIP CONFERENCE PROCEEDINGS 228

ANOMALOUS NUCLEAR EFFECTS IN DEUTERIUM/SOLID SYSTEMS

PROVO, UT 1990

EDITORS:

STEVEN E. JONES
BRIGHAM YOUNG UNIVERSITY
FRANCO SCARAMUZZI
ENEA, FRASCATI
DAVID WORLEDGE
ELECTRIC POWER RESEARCH
INSTITUTE

AIP

American Institute of Physics

New York

Digital Scan by New Energy Times

Authorization to photocopy items for internal or personal use, beyond the free copying permitted under the 1978 U.S. Copyright Law (see statement below), is granted by the American Institute of Physics for users registered with the Copyright Clearance Center (CCC) Transactional Reporting Service, provided that the base fee of \$2.00 per copy is paid directly to CCC, 27 Congress St., Salem, MA 01970. For those organizations that have been granted a photocopy license by CCC, a separate system of payment has been arranged. The fee code for users of the Transactional Reporting Service is: 0094-243X/87 \$2.00.

© 1991 American Institute of Physics.

Individual readers of this volume and nonprofit libraries, acting for them, are permitted to make fair use of the material in it, such as copying an article for use in teaching or research. Permission is granted to quote from this volume in scientific work with the customary acknowledgment of the source. To reprint a figure, table, or other excerpt requires the consent of one of the original authors and notification to AIP. Republication or systematic or multiple reproduction of any material in this volume is permitted only under license from AIP. Address inquiries to Series Editor, AIP Conference Proceedings, AIP, 335 East 45th Street, New York, NY 10017-3483.

L.C. Catalog Card No. 91-55245 ISBN 0-88318-833-3 DOE CONF-9010266

Printed in the United States of America.

Digital Scan by New Energy Times

CONTENTS

Prefacex	
CHAPTER 1: NEUTRON EMISSION STUDIES	
S. Affatato, A. Bertin, M. Bruschi, D. Bulgarelli, V. M. Bystritsky, M. Capponi, I. D'Antone, S. DeCastro, D. Galli, U. Marconi, I. Massa, M. Morganti, C. Moroni, M. Piccinini, M. Poli, N. Semprini-Cesari, M. Villa, A. Vitale,	3
M. Agnello, T. Bressani, D. Calvo, A. Feliciello, F. Iazzi, B. Minetti,	17
Alan N. Anderson and Steven F. Jones	24
Neutron Measurements in Search of Cold Fusion	62
F. Celani, A. Spallone, L. Liberatori, B. Stella, F. Ferrarotto, M. Corradi, P. Marini, S. Fortunati, and M. Tului	
High-Efficiency Neutron and Charged-Particle Spectrometers	01
High-Efficiency Low-Background Experimental Setup A. De Ninno, F. Scaramuzzi, C. Pontorieri, and P. Zeppa	22
Nuclear Effects In Electrolytically Deuterated Ti and Pd Electrodes	30
Observation of Nuclear Particles and Their Correlation with Acoustic and Electromagnetic Emission from Palladium Targets Loaded by Deuterium 1. P. I. Golubnichyi, A. D. Philonenko, A. A. Tsaric, E. P. Kovalchuk, G. I. Merzon, and V. A. Tsarev	146
Recording of Neutron and Acoustic Emissions from Palladium Target in a Low-Background Underground Experiment	151
B. V. Pritichenko, G. I. Merzon, and V. A. Tsarev Neutron Measurements on (Pd-D ₂ O) Electrolytic Cells Under Pulsed Current Conditions	158

Yang Liucheng, Qiao Shengzhong, and Yi Guoan In Quest of a Trigger Mechanism for Neutron Emissions From Deuterium/ Solid Systems	206
S. E. Jones, D. Bennion, D. Buehler, J. B. Czirr, D. L. Decker, J. Harb, R. Hunter, G. L. Jensen, E. P. Palmer, W. Pitt, S. Taylor, J. Thorne, D. Tolley, and J. C. Wang	
Stress-Induced Uphill Diffusion of Deuterium in Palladium	236
Anomalous Heat Output from Pd Cathodes Without Detectable Nuclear	
A. C. Klein, L. L. Zahm, S. E. Binney, J. N. Reyes, Jr., J. F. Higginbotham, A. H. Robinson, M. Daniels, and R. B. Peterson	247
On the Possibility of Cold Nuclear Fusion In Fe-Zr Amorphous Alloy E. Kuzmann, A. Vértes, M. Varsányi, L. Kiss, L. Korecz, F. Deák, Á. Kiss, and T. Masumoto	262
Neutron Emission from Low-Energy Deuteron Injection of Deuteron-Implanted Metal Foils (Pd, Ti, and In) J. S. C. McKee, G. R. Smith, J. J. G. Durocher, K. Furutani, C. B. Kwok, H. L. Johnston, M. S. Mathur, J. K. Mayer, A. Mirzai, Y. H. Yeo, K. S. Sharma, and G. Williams	275
Reproducible Neutron Emission Measurements from Ti Metal in Pressurized	
H. O. Menlove, M. A. Paciotti, T. N. Claytor, H. R. Maltrud, O. M. Rivera, D. G. Tuggle, and S. E. Jones	287
Statistical Analysis of a Cold Fusion Experiment	302
Correlated Nuclear and Thermal Measurements in D/Pd and H/Pd Systems Jerry R. Montgomery, Rondo Jeffery, Farhang Amiri, and Jack Adams	309
Neutron Spectra from D ₂ O-Pd Cells with Pulse Electrolysis	323
Neutron Emission from Deuterium-Loaded Metals	341
Nuclear Fusion Induced by the Controlled Out-Transport of Deuterons	
in Palladium Eiichi Yamaguchi and Takashi Nishioka	354
CHAPTER 2: CHARGED PARTICLE EMISSIONS	
Observation of Charged-Particle Bursts from Deuterium-Loaded Thin-Titanium	
Foils	375

Search for Energetic Charged-Particle-Reaction Products During Deuterium-	
Charging of Metal Lattices	383
G. P. Chambers, G. K. Hubler, and K. S. Grabowski	
Preliminary Results from the BYU Charged-Particle Spectrometer	397
Steven E. Jones, Troy K. Bartlett, David B. Buehler, J. Bart Czirr, Gary L.	
Jensen, and J. C. Wang	
The Precursor of "Cold Fusion" Phenomenon in Deuterium/Solid Systems Xingzhong Li, Shiyuan Dong, Keli Wang, Yueying Feng, Lee Chang, Chengmo Luo, Renyong Hu, Pingli Zhou, Dawei Mo, Yongfa Zhu, Chongli Song, Yingtang Chen, Minyan Yao, Chuang Ren, and Qianku Chen	419
Search for Charged-Particle d-d Fusion Products in an Encapsulated Pd Thin	
Film E. López, B. Neuhauser, F. Ziemba, J. Jackson, E. Mapoles, J. McVittie, and R. Powell	430
High Sensitivity Measurement of Charged Particles Emitted During Pulsed	
Electrolysis of D ₂ 0	445
Ryoichi Taniguchi and Takao Yamamoto	
Relation Between Charged Particle Emission and Induced Anode Current	
Pulses Accompanying D ₂ O Electrolysis	453
Ryoichi Taniguchi and Takao Yamamoto	
CHAPTER 3: TRITIUM MEASUREMENTS	
Tritium Analysis in Palladium with an Open System Analytical Procedure K. Cedzynska, S. C. Barrowes, H. E. Bergeson, L. C. Knight, and F. G. Will	463
Tritium and Neutron Measurements from Deuterated Pd-Si T. N. Claytor, D. G. Tuggle, H. O. Menlove, P. A. Seeger, W. R. Doty, and R. K. Rohwer	467
First Results from a Ten Electrolytic Cells Experiment	481
Tritium Production Process—Comparison Between Neutron Emission Rate and	
Tritium Production Rate	494
Detection of Reaction Products Induced in Plasma Focus Electrodes	507
G. H. Miley, O. Barnouin, and B. Temple Observation of Tritium in Gas/Plasma Loaded Titanium Samples	514
M. Srinivasan, A. Shyam, T. C. Kaushik, R. K. Rout, L. V. Kulkarni, M. S. Krishnan, S. K. Malhotra, V. G. Nagvenkar, and P. K. Iyengar	314
The Effect of Hydriding on the Physical Structure of Palladium and on the	
Release of Contained Tritium	535
Attempt to Confirm the X-ray Radiography Results Reported by	
S. Szpak et al.	551
Zhong-Qun Tian, Steven C. Barrowes, and Haven E. Bergeson	

Digital Scan by New Energy Times

Tritium and Tritons in Cold Fusion	552
Calorimetric Observation Combined with the Detection of Particle Emissions During the Electrolysis of Heavy Water	572
Zhong L. Zhang, Bao Z. Yan, Ming G. Wang, Jin Gu, and Fu Tan	
CHAPTER 4: FUSION IN THE PLANETS	
The Effect of Electron Screening and Velocity Distribution on Proton-	
Deuterium Fusion Rates in Jupiter	584
Gary S. Chulick, Robert A. Rice, and Yeong E. Kim Nuclear Fusion in Jupiter	591
Mariusz Gajda and Johann Rafelski	
Cold Nuclear Fusion Within the Core of the Earth?	611
Cold Nuclear Fusion in the Earth	616
E. Paul Palmer Examination of the Possibility of Cold Nuclear Fusion Occurring Within	
the Earth's Mantle	646
CHAPTER 5: THEORY	
Computer Simulation of D Atoms in a Pd Lattice	653
Production of Tritium, Neutrons, and Heat Based Upon the Transmission	
Resonance Model (TRM) for Cold Fusion	660
(D+D+)2e ⁻ Binuclear Atoms as Activated Precursors in Cold and	668
Warm Fusion	000
Fracto-Acceleration Model of Cold Nuclear Fusion	686
and A. A. Tsarik Lattice Induced Nuclear Chemistry	691
Scott R. Chubb and Talbot A. Chubb	
Fluctuations and Nonreproducibility in Cold Fusion From Free Quark	
Catalysis	711
Luciano Fonda and Gordon L. Shaw Theory of Electron Catalyzed Fusion in Pd Lattice	717
Michal Gryzinski	
Coherent Fusion Mechanisms	ma .

Influence of Surface Tension, Nucleation Centers, and Electron Effective	
Mass on the Achievable Level of Electrolytic Deuterium Loading	782
Peter H. Handel	
Pressure Enhanced Fusion Rates in Lattice Channels	790
M. Jändel and J. Sahrling	201
Point-Effect and Non-equilibrium Conditions in Electrolysis Experiments	001
X. L. Jiang, N. Xu, and L. J. Han	207
Surface-Reaction Theory of Cold and Warm Fusion	007
Y. E. Kim	
Progresses of NATTOH Model and New Particles Emitted During	027
Cold Fusion	821
T. Matsumoto	040
Fractofusion Revisited	840
Giuliano Preparata	046
Cluster-Impact Fusion: Bridge Between Hot and Cold Fusion?	846
M. Rabinowitz, Y. E. Kim, R. A. Rice, and G. S. Chulick	
Nuclear Effects in the Collapsing Lattice Model for Deuterated Palladium:	0.00
New Results	867
Eugenio Tabet and Alexander Tenenbaum	
The Roles of Coherency and Intermittency on D-D Fusion Reaction in	
PdDx Deuteride	884
H. Takahashi	
The Theory of Nonthreshold Cold Fusion in Solids	894
V. I. Vysotskii and R. N. Kuz'min	
Coupled Channel Model for Ultra-Low Energy Deuteron-Deuteron Fusion	911
W. Zakowicz and J. Rafelski	
Technical Status of Cold Fusion Results and Meeting Summary	930
David H. Worledge	
List of Participants	949
Author Index	955

PREFACE

An international gathering of over 150 scientists scrutinized observations of low-level nuclear effects associated with deuterium loaded into various solids. The emphasis was on nuclear physics and geophysical experimental data with theoretical issues also explored. The subjects of calorimetry and electrochemistry were discussed only as adjuncts to investigations of nuclear reaction products. The workshop was sponsored by the Electric Power Research Institute, the U.S. Dept. of Energy Advanced Energy Projects Division, and Brigham Young University.

Nearly seventy papers were presented, with discussions divided into five broad categories with

chairs indicated:

 Neutron Emission Studies: W. Meyerhof (Stanford), K. Nagamine (U. Tokyo), A. Vitale (U. Bologna), K. Wolf (Texas A&M), F. Scaramuzzi (Frascati), H. Menlove (LANL), V. Tsarev (Lebedev Physical Inst.)

2. Charged Particle Detection: J. Ziegler (IBM), E. Cecil (Colorado School of Mines)

3. Tritium/Helium Studies: G. Miley (U. Illinois), N. Hoffman (Rockwell Int'l.), M. Srinivasan (BARC, India)

4. Fusion in the Planets: F. Goff (LANL), E.P. Palmer (BYU), G. McMurtry (U. Hawaii)

5. Theory: J. Rafelski (U. Arizona), V. Belyaev (Dubna), Y. Kim (Purdue), E. Tabet (INFN, Italy)

Sixty-seven papers are included in these proceedings, arranged in alphabetical order under each category. We thank reviewers of the papers for their efforts and note that the screening allows for

some rather unusual ideas to be presented in the proceedings.

Neutrons. Significant improvements in neutron detectors and signal/noise ratios were reported. Techniques now include plastic and liquid scintillators often in conjunction with neutroncapture detection using lithium-doped glass or helium-3-filled proportional counters. Time-offlight and pulse-digitization techniques are also employed. Groups in the United States (S. Jones [BYU], H. Menlove & T. Claytor [LANL], K. Wolf [Texas A&M]), Italy (A. Bertin [Bologna], F. Scaramuzzi [ENEA, Frascati] and F. Celani [INFN, Frascati]), Argentina (J. Granada [Centro Atómico Bariloche] and China (R. Zhu [Inst. of Atomic Energy, Beijing]) reported on neutron studies in deep-underground locations. Observations of neutron emissions from D2gas-loaded metals, D2O electrolysis cells, and d-ion-implanted metal foils, in low background environments (very low cosmic-ray fluxes particularly) and with redundant detectors confirmed earlier observations, with rates broadly consistent with the early Jones (BYU) et al. report. Neutron bursts of the order of a few hundred neutrons produced in about 100 μ sec, consistent with early observations of Menlove (Los Alamos) et al., were also reported in detectors of various types, including segmented neutron counters in underground locations. R. Anderson discussed the need for redundant detectors and exclusion of cosmic-ray effects based on negative experiments carried out at Los Alamos one year ago. In fact, redundant detectors, exclusion of cosmic-rays, adequate hydrogen controls and improved reproducibility based largely on controlled sample preparation techniques were of paramount importance in recent experiments.

Charged Particles. Several experimenters reported searches for energetic charged particles from deuterium-loaded metal foils. E. Cecil (Colorado S.M.), G. Chambers (NRL), and R. Taniguchi (ARL, Japan) observed charged particles having a few MeV energy using silicon surface-barrier detectors, while K. Wolf (Texas A&M) has not found any evidence as yet. X.Z. Li (Tsinghua U., China) reported numerous ion tracks in etched plastic detectors exposed to deuterided Pd, and showed a dramatic slide of etched tracks that had the appearance of arising from a

localized "burst" of ions.

Tritium/Helium-4. Reports of tritium production from deuterided metals and of tritium contamination in metal samples generated considerable discussion at the workshop. The possibility of tritium contamination leading to false readings emerged as a drawback of this technique, and K. Wolf, in particular, reported the presence of tritium contamination in as-received palladium samples. Noting that he had not seen evidence for tritium production for many months, E. Storms (LANL) showed experimental evidence that tritium loaded into palladium diffuses out almost exclusively to the gas phase under cathodic potential in an electrolytic cell, whereas several experiments finding tritium show significant amounts of tritium in the electrolyte. Preliminary results from experiments carried out at the National Cold Fusion Institute of the U. of Utah were originally interpreted as evidence for low-level tritium production in electrolytic cells, but this turned out to be due to a calibration problem for colored solutions. However, M. Srinivasan (BARC), T. Claytor (LANL), and O. Matsumoto (Aoyama Gakuin U.) continue to find evidence for tritium production. In addition, helium-4 production in a molten-salt electrolytic cell was reported by B. Liebert (U. Hawaii), with two caveats: a control with light hydrogen had not yet been done, and the amount of helium-4 above that in the as-received metal was too small to account for observed "excess heat" by a factor of about 108.

Geophysical Investigations. P. Britton (Reiss Foundation) reported evidence for increasing helium-3 and tritium with depth in bore holes in the Hamilton shear zone. P. Palmer (BYU) reviewed the geophysical 'cold fusion' hypothesis, which was responsible for the inception of cold fusion experiments at BYU in 1986. F. Goff (LANL) presented evidence for several tritium units in "magmatic" water from Mt. St. Helens. He and G. McMurtry (U. Hawaii) collected samples from the Pu'u O'o vent of the Hawaiian volcano Kileau which will be analyzed for tritium content. Their adventure was the subject of a most interesting after-banquet slide and video talk by Prof. McMurtry at Robert Redford's Sundance Resort on the second night of the conference.

Theory. Lines of thought relevant to the very puzzling observations of low-level nuclear reactions in deuterided metals include: micro-hot fusion, or fractofusion, electron screening, low-energy nuclear resonances, neutron-transfer (Oppenheimer-Phillips) reactions, coherent fusion mechanisms, nucleation centers in metal lattices, reactions associated with phase changes, formation of metallic deuterium, fusion catalyzed by di-quarks or new particles. A few participants, notably P. Hagelstein (MIT) and A. Takahashi (Osaka U.), explored the novel concept that nuclear reactions other than two-body deuteron-deuteron fusion might account for observations of neutrons and charged-particles having energies greater than 3 MeV reported at the workshop. Such models also allow for a large tritium-to-neutron ratio (roughly 10^8 is reported by some researchers) without invoking an anomalous branching ratio for d-d fusion favoring the tritium channel.

Conclusions. Several features emerge from the ensemble of studies presented at the BYU workshop. Observed nuclear particle emissions are episodic, with episodes typically lasting minutes or hours. Rates of particle emission vary greatly from episode to episode, with some observed rates now several orders of magnitude above the instrumental sensitivity. Detectors dedicated to the study of these effects are improving as are signal/noise ratios. However, an immediate "trigger" mechanism remains elusive, as does a coherent model for the observations. Observed effects seem to be related to changing temperatures and d/metal ion ratios (highly nonequilibrium conditions); very little evidence has emerged for a correlation between nuclear effects and high d/palladium loading ratios.

Negative experiments were discussed at the meeting, many of which pursued the notion that high d/Pd loading was essential. Still, it was recognized that observations must be checked in sensitive detectors by skeptical observers. In this spirit, an offer was extended by Y. Totsuka (U. Tokyo) for use of the deep-underground Kamiokande detector, a 4500-ton water-Cerenkov system now used for neutrino studies. S. Jones and colleagues accepted the offer on condition that several weeks (rather than days) be allotted to the tests. The tests should be completed by Summer 1991.

It is clear that a robust community intends to pursue the study of anomalous nuclear effects in deuterium/solid systems. We expect that the sensitivity of detectors will continue to be improved, accelerating progress in experiments. Hopefully the interaction between theorists and experimenters will lead to increased understanding and corresponding control of what appears to be a new and intriguing regime for nuclear reactions.

We thank, in particular, Nate Hoffman (Rockwell International), and Nanette Hamm (BYU) for their dedicated assistance in making the conference a success.

Steven E. Jones
Brigham Young University
Franco Scaramuzzi
ENEA, Frascati
David Worledge
Electric Power Research Institute