

EMERGING NUCLEAR ENERGY SYSTEMS 1989

Proceedings of the fifth

International Conference on

Emerging Nuclear Energy Systems

Editors

Ulrich von Möllendorff Balbir Goel

World Scientific

EMERGING NUCLEAR ENERGY SYSTEMS 1989

Proceedings of the fifth International Conference on Emerging Nuclear Energy Systems

Karlsruhe, F R Germany July 3-6, 1989

Editors

Ulrich von Möllendorff Balbir Goel Kernforschungszentrum Karlsruhe

> NO LONGER THE PROPERTY OF THE UNIVERSITY OF DELAWARE LIBRARY

Published by

World Scientific Publishing Co. Pte. Ltd., P O Box 128, Farrer Road, Singapore 9128 USA office: 687 Hartwell Street, Teaneck, NJ 07666 UK office: 73 Lynton Mead, Totteridge, London N20 8DH

130 P 7522

EMERGING NUCLEAR ENERGY SYSTEMS 1989

Copyright © 1989 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

ISBN: 981-02-0010-2

Printed in Singapore by JBW Printers & Binders Pte. Ltd.

Preface

This book contains the papers presented at ICENES'89, the fifth International Conference on Emerging Nuclear Energy Systems. The conference was organized by Kernforschungszentrum Karlsruhe (Karlsruhe Nuclear Research Center) and held in Karlsruhe, Federal Republic of Germany, on 3-6 July 1989 with about 150 participants from 24 countries. It was co-sponsored by

> American Nuclear Society Atomic Energy Society of Japan Canadian Nuclear Society Chinese Nuclear Society European Nuclear Society Kerntechnische Gesellschaft Laser Society of Japan

and financially supported by Kernforschungszentrum Karlsruhe and

Badenwerk AG Fichtner Consulting Engineers IBM Stiftungsfonds Interatom GmbH Kraftanlagen AG Uhde GmbH.

The Organizing Committee (H.H.Hennies, general chairman, G. Kessler, organizing chairman) expresses its gratitude to all of them.

The field of Emerging Nuclear Energy Systems, as this series of conferences has perceived it, is vast and interdisciplinary. It encompasses every advanced way of producing or utilizing energy from nuclear reactions, ranging from improvements in today's fission reactors, or their safety containments, or the treatment of their waste, to entirely new ways of tapping the immense energy potential which exists in nuclei. Consequently, the conference participants are coming from a variety of backgrounds industrial enterprises, consulting companies, universities and governmental -research institutions. This mixture (which is clearly reflected in the different character of the papers) and mutual exposure to each other's ideas is intended because it helps to overcome the traditional separations between the many "pure" and "applied" fields. Bridging the gaps between the scientist, the engineer and the manager can be decisive in transforming an idea or discovery into an achievement of the real world. If some of the papers appear highly speculative to the reader he should realize that -- as A.A.Harms has put it -- it will be necessary to look at a hundred different concepts to find perhaps ten that will be technically feasible, and among these perhaps one that will be economically and ecologically feasible. Preface

This book contains the papers presented at ICENES'89, the fifth International Conference on Emerging Nuclear Energy Systems. The conference was organized by Kernforschungszentrum Karlsruhe (Karlsruhe Nuclear Research Center) and held in Karlsruhe, Federal Republic of Germany, on 3-6 July 1989 with about 150 participants from 24 countries. It was co-sponsored by

> American Nuclear Society Atomic Energy Society of Japan Canadian Nuclear Society Chinese Nuclear Society European Nuclear Society Kerntechnische Gesellschaft Laser Society of Japan

and financially supported by Kernforschungszentrum Karlsruhe and

Badenwerk AG Fichtner Consulting Engineers IBM Stiftungsfonds Interatom GmbH Kraftanlagen AG Uhde GmbH.

The Organizing Committee (H.H.Hennies, general chairman, G. Kessler, organizing chairman) expresses its gratitude to all of them.

The field of Emerging Nuclear Energy Systems, as this series of conferences has perceived it, is vast and interdisciplinary. It encompasses every advanced way of producing or utilizing energy from nuclear reactions, ranging from improvements in today's fission reactors, or their safety containments, or the treatment of their waste, to entirely new ways of tapping the immense energy potential which exists in nuclei. Consequently, the conference participants are coming from a variety of backgrounds -- industrial enterprises, consulting companies, universities and governmental research institutions. This mixture (which is clearly reflected in the different character of the papers) and mutual exposure to each other's ideas is intended because it helps to overcome the traditional separations between the many "pure" and "applied" fields. Bridging the gaps between the scientist, the engineer and the manager can be decisive in transforming an idea or discovery into an achievement of the real world. If some of the papers appear highly speculative to the reader he should realize that -- as A.A.Harms has put it -- it will be necessary to look at a hundred different concepts to find perhaps ten that will be technically feasible, and among these perhaps one that will be economically and ecologically feasible.

In comparing the fifth ICENES to the fourth¹, some tendencies and shifts of emphasis appear worth mentioning. The interest in new ways of nuclear waste management has increased (5 papers versus 2); in fission reactor work, the aspect of safety (and public acceptance) is strongly dominating in the wake of the Chernobyl accident of 1986; the field of advanced-fuel fusion has grown and is concentrating on D-³He fuel, certainly spurred by the discovery of the helium-3 resource in the moon; muon catalyzed fusion has also grown and presents, in addition to fundamental physics work, new reactor and application concepts. Also, an increased interest in space power systems is observed. Finally, "Cold Fusion", first reported in March 1989, the possible fusion at ambient temperature of deuterium absorbed in solid matter, made a most exciting addition to ICENES'89. A somewhat improvised special session, without advance abstract submission and acceptance procedure for lack of time, was held on this topic. Its presentations are included here as far as their authors have been able and willing to provide manuscripts in the short time available. The editors are especially grateful for the support from these authors in rendering the proceedings up-to-date.

> Ulrich von Möllendorff Balbir Goel

¹ Emerging Nuclear Energy Systems (Madrid, 1986). Edited by G. Velarde and E. Mínguez. World Scientific, 1987.

CONTENTS

Preface	v
Organizing Committee	vii
K. Samu Ray, S. Barg, & P.K. margan. A sector based in the sector.	
a) Advanced Fission Reactors	
Safety of Emerging Nuclear Energy Systems: Criteria and Ways to Meet Them V.M. Novikov & I.S. Slesarev	3.
An Innovative Liquid Metal Design with Worldwide Application Potential J.E. Quinn & R.C. Berglund	9
Metallic Fuel Fast Breeder Reactors in the Uranium-Plutonium and Thorium Fuel Cycle V.M. Murogov, V.G. Ilynin, A.I. Zinin, V.Y. Rudneva, & A.N. Shmelev	13
Improved Containment Concept for Future Pressurized Water Reactors H.H. Hennies, G. Kessler, & J. Eibl	19
Status and Prospects of the Cooperative KWU High Converter Development 1989 H. Moldaschl, R. Brogli, & B. Kuczera	25
Safety Related Design Features of the HTR-Module G.H. Lohnert	30
Molten Salt Reactor as Asymptotic Safety Nuclear System V.M. Novikov & V.V. Ignatyev	35
Neutron and Thermal Dynamics of a Gaseous Core Fission Reactor H. van Dam, J.C. Kuijper, A.J.C. Stekelenburg, J.E. Hoogenboom, W. Boersma-Klein, & J. Kistemaker	39 boo orong da do do do do boo orong da do do do do
The Gas Blanket in a Gas Core Fission Reactor J. Kistemaker & W. Boersma-Klein	45
Simulator Studies of a Gaseous Core Fission Reactor J.C. Kuijper, H. van Dam, A.J.C. Stekelenburg, & J.E. Hoogenboom	51 nanimo() ternant (b
b) Fission Reactor Waste Management	
An Advanced Management Concept for Wastes from Reprocessing and MOX Fuel Fabrica <i>H. Krause</i>	ation 59
Transuranium Element Fuel Cycle in LWR-FR Symbiosis L. Koch	65

A Study of Incineration Target System T. Takizuka, I. Kanno, H. Takada, T. Ogawa, T. Nishida, & Y. Kaneko	70
Calculations of a Proton-Accelerator Driven Incineration Reactor <i>T. Matsumoto</i>	75
Systematics of Criticality Properties of Actinide Nuclides and Its Bearing on the Long Lived Fission Waste Problem <i>M. Srinivasan, K. Subba Rao, S.B. Garg, & P.K. Iyengar</i>	Commission Commis 80 B Advanced Fielder
c) Magnetic Confinement Fusion, Hybrids and Symbioses	
The NET Design <i>R. Toschi</i>	87
The Emerging Option of Fusion Breeders for the Early Exploitation of Thorium in the Indian Context <i>M. Srinivasan, T.K. Basu, K. Subba Rao, & P.K. Iyengar</i>	91
Fusion-Fission Hybrid Reactor Conceptual Design (Only Producing Fuel) for China <i>L.J. Qiu</i>	95
Rational Non-Pu Fuel-Cycle Composed Simple Power-Stations and Fissile Producers — Thorium Molten-Salt Nuclear Energy Synergetics <i>K. Furukawa, K. Mitachi, Y. Kato, & A. Lecocq</i>	100
Modeling Fuel Cycle Managment of Joint Nuclear Energy Systems Using a Personal Comp G. Csom & S. Fehér	outer 105
Thermonuclear Self-Sufficiency in the R < 2 Range G.J. Lartigue, D.H. Jiménez, & M.J. Soberón	110
Hydrodynamic and Reaction Fluctuations in a D + T Lorentz Plasma J.L. Muñoz-Cobo	115
Calculation of Beam Focusing Created by Current Filament	5. 5. meteres 2120 meteres 103 3.
d) Inertial Confinement Fusion	
Advances in Inertial Confinement Fusion C. Yamanaka	125
Prospects for Inertial Fusion as an Energy Source W.J. Hogan	131
KrF Lasers for Inertial Confinement Fusion D.B. Harris, D.C. Cartwright, J.F. Figueira, T.E. McDonald, & M.E. Sorem	136

High-Gain Direct-Drive Capsule Design for ICF	141
G. Velarde, J.M. Aragonés, L. Gámez, C. González, J.J. Honrubia, J.M. Martínez-Val, E. Mínguez, J.M. Perlado, M. Piera, U. Schröder, & P. Velarde	
Beam Target Nuclear Interactions in a Dense Plasma J.G. Linhart	146
Bethe's 〈 I 〉 for the Calculation of Proton Stopping Power in ICF Plasma B. Goel & N.K. Gupta	153
Development of a Boltzmann-Fokker-Planck Code for Fast Ion Transport in ICF Plasmas T. Honda, Y. Nakao, K. Kudo, T. Shiba, H. Nakashima, & M. Ohta	156
Suprathermal Fusion in Inertially Confined Plasmas Y. Nakao, T. Honda, K. Kudo, H. Nakashima, T. Shiba, & M. Ohta	2 0 161
Determination of Critical Velocity and Fractions of Suprathermal Electrons in the Implosion of Deuterium-Tritium Pellets by the Inertial Confinement Fusion <i>J.F. Miramar Blázquez</i>	166
Calculation of Heavy-Ion-Beam Conversion Efficiency into Thermal Radiation and Opacity Measurement in the GSI SIS Experiments <i>N.A. Tahir & R.C. Arnold</i>	170 170
e) Advanced Fuel Fusion	
Advanced Fuel Fusion M. Heindler & W. Kernbichler	177
Transition to Environmentally Acceptable Fuels in the 21st Century L.J. Wittenberg, G.L. Kulcinski, & W.R. Wilkes	183
Breakeven and Ignition Conditions for D- ³ He Fusion G.A. Emmert, L.A. El-Guebaly, R. Klingelhöfer, G.L. Kulcinski, J.F. Santarius, J.E. Scharer, I.N. Sviatoslavsky, P.L. Walstrom, & L.J. Wittenberg	188
Comparison of the Physics Performance of D- ³ He Fusion in High and Low Beta Toroidal Devices <i>W. Kernbichler, G.H. Miley, & M. Heindler</i>	192
Bootstrap Drive of D- ³ He Tokamak Reactors M.J. Alava, S.J. Karttunen, & R.R.E. Salomaa	197
Production of Intense Polarized Atoms and Its Application to Tokamak Fusion Reactor Y. Wakuta, Y. Watanabe, S. Urano, O. Mitarai, & H. Hasuyama	202

f) Fusion Reactor Neutronics	
Material Damage in Inertial and Magnetic Fusion Reactors: A Key Aspect to be Considered J. Sanz, J.M. Perlado, & M. Piera	209
LOTUS Experimental Lithium-Lead Module (EL ² M) — Some Preliminary Results S. Azam, P.A. Haldy, M. Schaer, P. Strasser, & J.P. Schneeberger	214
Preliminary Studies for Uranium-233 Breeding Measurements in Thorium Oxide Assembly at the LOTUS Facility <i>T.K. Basu & P.A. Haldy</i>	219
Fusion Reactor Blanket Neutronics G. Shani, A. Tsechanski, A. Goldfeld, R. Ofek, U. German, & E. Aruchas	224
The Impact of the ⁷ Li(n,n'α)T Secondary Neutron Spectrum on the Tritium Breeding in ⁷ Li <i>R. Ofek, A. Tsechanski, & G. Shani</i>	230
Integral Experiments with 14 MeV-Neutron Source into Multiplying Assemblies and Verification of Neutron Transport Code V.A. Zagryadskii, D.V. Markovskii, V.M. Novikov, D.Yu. Chuvilin, & G.E. Shatalov	235
g) Nuclear Space Power Systems	
Overview of CNES-CEA Joint Programme on Space Nuclear Brayton Systems Z.P. Tilliette, F. Carré, E. Proust, S. Chaudourne, B. Vrillon, & P. Keirle	241
Characteristics of a Californium Isotope Power Source G. Cripps & A.A. Harms	247
MICF — A High Gain Fusion Reactor for Power and Space Applications <i>T. Kammash</i>	250
Nuclear Energy Systems for Space — FRG Experiences and Outlook J. Gilles & R. Pruschek	254
h) Muon Catalyzed Fusion	
Muon Catalyzed Fusion in Plasma State and High Intensity DT Fusion Neutron Source <i>H. Takahashi</i>	261
Energy Gain of ICF-μ DT Symbiosis A.A. Harms, G. Cripps, & B. Goel	267
Double Target Option for Pion Production for Muon Catalyzed Fusion G.R. Shin & J. Rafelski	271
Muon Loss in Catalysed Fusion L. Chatterjee	276

xiv

Muonic Catalytic Fusion; Its Relationship to Accelerator-Breeder V. Knapp & T. Petković	279
On the Requirements for a Competitive Cold Fusion Reactor S. Taczanowski	284
i) Cold Fusion	
Cold Fusion Results in BARC Experiments P.K. Iyengar	291
Search fcr the Upper Limit for the Stimulated D + D Nuclear Fusion in Metallic Deuteride S. Blagus, M. Bogovac, D. Hodko, M. Krčmar, D. Miljanić, P. Tomaš, & M. Vuković	296
Investigations of Neutron Emission in a Cold Fusion Experiment in Palladium M. Szustakowski, J. Farny, M. Muniak, A. Nowak, P. Parys, W. Skrzeczanowski, R. Socha, J. Teter, J. Wolski, J. Wołowski, & E. Woryna	299
Background Induced D-D Fusion G. Shani, A. Brokman, C. Cohen, & A. Grayevsky	304
Review of the Current Theoretical Status of Cold Fusion D. Harley, M. Gajda, & J. Rafelski	308
Nuclear Reaction Rates Between Hydrogen Isotopes in PdD _x S. Ichimaru, A. Nakano, S. Ogata, H. Iyetomi, & T. Tajima	314
Dynamical Screening of Potential by Mobile Deuteron, Branching Ratio of d(d,p)t and d(d,n)He ³ Reaction in PdDx and its Implication to d-d Muon Catalyzed Fusion <i>H. Takahashi</i>	318
Nuclear Fusion in Host Lattices Discussed by the Model of a Nondegenerate Positive Hydrogen Isotope Ion Gas H. Hora, G.H. Miley, L. Cicchitelli, A. Scharmann, & W. Scheid	322
Author Index	327
List of Participants	329